1
|
Cao ZT, Mao JL, Huang CY, Wang HL, Wang MZ, Wang WL, Zhou YB, Li J. PRL-3: unveiling a new horizon in cancer therapy. Acta Pharmacol Sin 2025:10.1038/s41401-025-01563-1. [PMID: 40341216 DOI: 10.1038/s41401-025-01563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/08/2025] [Indexed: 05/10/2025]
Abstract
PRL-3, a protein tyrosine phosphatase (PTP), has a significant influence on the pathogenesis of various cancers with its overexpression significantly correlating with tumor invasion, metastasis and poor prognosis. It significantly affects tumor cell behavior through its involvement in cell proliferation, migration and metabolic processes. Furthermore, the interaction between PRL-3 and the tumor microenvironment characterized by its adaptability to stress and its role in metabolic reprogramming enhances tumor cell survival and dissemination. Targeted therapies against PRL-3, encompassing small molecule inhibitors and the monoclonal antibody PRL-3-zumab, have shown promise in clinical and preclinical studies, presenting new avenues for cancer treatment. In addition, innovative approaches such as CAAX motif-targeting agents and PRL-3 degradation strategies hold promise for developing more precise and effective interventions. This review explores PRL-3's multifaceted roles across different tumor types and microenvironments, while discussing current and emerging therapeutic strategies aimed at exploiting its oncogenic potential.
Collapse
Affiliation(s)
- Zi-Tong Cao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jia-Luo Mao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chang-Ying Huang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han-Lin Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Zhi Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Long Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China.
| | - Yu-Bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Mingledorff GA, Sharlow ER. Deletion of PTP4A3 phosphatase in high-grade serous ovarian cancer cells decreases tumorigenicity and produces marked changes in intracellular signaling pathways and cytokine release. J Pharmacol Exp Ther 2025; 392:100010. [PMID: 39892999 DOI: 10.1124/jpet.124.002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
The oncogenic protein tyrosine phosphatase PTP4A3 is frequently overexpressed in human ovarian cancers and is associated with poor patient prognosis. PTP4A3 is thought to regulate multiple oncogenic signaling pathways, including STAT3, SRC, and extracellular signal-regulated kinase. The objective of this study was to generate ovarian cancer cells with genetically depleted PTP4A3, to assess their tumorigenicity, to examine their cellular phenotype, and to uncover changes in their intracellular signaling pathways and cytokine release profiles. Genetic deletion of PTP4A3 using CRISPR/CRISPR-associated protein 9 enabled the generation of individual clones derived from single cells isolated from the polyclonal knockout population. We observed a >90% depletion of PTP4A3 protein levels by western blotting in the clonal cell lines compared with the sham-transfected wild-type population. The wild-type and polyclonal knockout cell lines shared similar monolayer growth rates, whereas the isolated clonal populations 2B4, 3C9, and 3C12 exhibited significantly lower monolayer growth characteristics consistent with their lower PTP4A3 levels. The clonal Ptp4a3 knockout cell lines also had substantially lower in vitro colony formation efficiencies compared with the wild-type cells and were less tumorigenic in vivo. The clonal knockout cells were markedly less responsive to interleukin-6-stimulated migration in a scratch wound assay compared with the wild-type cells. Antibody microarray assays documented differences in cytokine release and intracellular phosphorylation patterns in the Ptp4a3-deleted clones. Bioinformatic network analyses indicated alterations in cellular signaling nodes. These biochemical changes could ultimately form the foundation for pharmacodynamic endpoints useful for emerging anti-PTP4A3 therapeutics. SIGNIFICANCE STATEMENT: Clones of high-grade serous ovarian cancer cells were isolated, in which the oncogenic phosphatase Ptp4a3 gene was deleted using CRISPR/CRISPR-associated protein 9 methodologies. The Ptp4a3-null cells exhibited loss of in vitro proliferation, colony formation, and migration and reduced in vivo tumorigenesis. Marked differences in intracellular protein phosphorylation and cytokine release were seen. The newly developed Ptp4a3 knockout cells should provide useful tools to probe the role of PTP4A3 phosphatase in ovarian cancer cell survival, tumorigenicity, and cell signaling.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia.
| | | | | | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | | | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia
| |
Collapse
|
3
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
4
|
Song Z, Wang H, Zhang S. Negative regulators of Wnt signaling in non-small cell lung cancer: Theoretical basis and therapeutic potency. Biomed Pharmacother 2019; 118:109336. [PMID: 31545260 DOI: 10.1016/j.biopha.2019.109336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 02/05/2023] Open
Abstract
Significant advances in the treatment of non-small cell lung cancer (NSCLC) have been made over the past decade, and they predominantly involve molecular targets such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements. However, despite the initial good response, drug resistance eventually develops. The Wnt signaling pathway has recently been considered important in embryonic development and tumorigenesis in many cancers, particularly NSCLC. Moreover, the aberrant Wnt pathway plays a significant role in NSCLC and is associated with cancer cell proliferation, metastasis, invasion and drug resistance, and the suppression of canonical or noncanonical Wnt signaling through various biological or pharmacological negative regulators has been proven to produce specific anticancer effects. Thus, blocking the Wnt pathway via its negative regulators may overcome the resistance of current treatment methods and lead to new treatment strategies for NSCLC. Therefore, in this review, we summarize recent studies on the role of negative regulators in Wnt signaling in NSCLC and the therapeutic potency of these molecules as agents and targets for NSCLC treatments.
Collapse
Affiliation(s)
- Zikuan Song
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Song H, Liu L, Song Z, Ren Y, Li C, Huo J. P4HA3 is Epigenetically Activated by Slug in Gastric Cancer and its Deregulation is Associated With Enhanced Metastasis and Poor Survival. Technol Cancer Res Treat 2019; 17:1533033818796485. [PMID: 30198421 PMCID: PMC6131293 DOI: 10.1177/1533033818796485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prolyl 4-hydroxylase alpha subunit is the enzymic active site of prolyl 4-hydroxylase, which is a critical enzyme to maintain the stability of newly synthesized collagens. The expression profile and functional role of P4HA3 in gastric cancer have not been explored. In the Cancer Genome Atlas-Stomach Cancer, P4HA3 RNA is significantly upregulated in gastric cancer than in normal stomach tissues. In the Human Protein Atlas, Prolyl 4-hydroxylase alpha subunit is not detectable by immunohistochemistry staining in normal stomach tissues, but it has weak staining in 7 of 12 gastric cancer tissues. Further study showed that SNAI2 (encoding Slug) is highly coexpressed with P4HA3 (Pearson r = 0.70) in Cancer Genome Atlas-Stomach Cancer. In vitro cell assay showed that Slug could efficiently bind to the P4HA3 promoter and increase its transcription. P4HA3 exon array data in Cancer Genome Atlas-Stomach Cancer revealed that 2 exons are significantly upregulated in M1 (N = 27) cases than in M0 (N = 367) cases. In MKN-45 and AGS cells, P4HA3 upregulation could enhance cell motility and invasiveness. In Cancer Genome Atlas-Stomach Cancer, high P4HA3 exon expression is associated with significantly worse 5-year and 10-year overall survival (P = .007 and .009, respectively). Data mining in Kaplan-Meier plotter also showed that high P4HA3 expression is related to unfavorable overall survival (hazard ratio: 1.54, 95% confidence interval: 1.23-1.93, P < .001) and first progression-free survival (hazard ratio: 1.64, 95% confidence interval: 1.29-2.1, P < .001). Based on findings above, we infer that P4HA3 is epigenetically activated by Slug, and its deregulation is associated with enhanced metastasis and poor survival of gastric cancer.
Collapse
Affiliation(s)
- Hu Song
- 1 Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingling Liu
- 2 Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhaoquan Song
- 3 Clinical Laboratory, Linyi Luozhuang Central Hospital, Linyi, Shandong, China
| | - Yongqiang Ren
- 4 Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Chao Li
- 5 Department of NMR, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Jiege Huo
- 6 Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Wang Y, Zhang S, Liu J, Fang B, Yao J, Cheng B. Matrine inhibits the invasive and migratory properties of human hepatocellular carcinoma by regulating epithelial‑mesenchymal transition. Mol Med Rep 2018; 18:911-919. [PMID: 29845189 PMCID: PMC6059723 DOI: 10.3892/mmr.2018.9023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Matrine has been reported to be an effective anti-tumor therapy; however, the anti-metastatic effects of matrine on hepatocellular carcinoma (HCC) and the molecular mechanism(s) involved remain unclear. Therefore, the aims of the present study were to evaluate the effects of matrine on hepatoma and to determine the associated mechanism(s) involved. In the present study, matrine was confirmed to prevent the proliferation of HCC cells and it was observed that matrine also inhibited the migratory, and invasive capabilities of HCC at non-toxic concentrations. Additionally, matrine increased epithelial-cadherin expression and decreased the expression levels of vimentin, matrix metalloproteinase (MMP)2, MMP9, zinc finger protein SNAI1 and zinc finger protein SNAI2. These results indicate that the anti-metastatic effect of matrine may be associated with epithelial-mesenchymal transition (EMT). Furthermore, matrine can increase phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) expression and reduce phosphorylated-protein kinase B (Akt) levels. In conclusion, these results suggested that matrine is a potential therapeutic agent that can suppress cancer-associated invasion and migration via PTEN/Akt-dependent inhibition of EMT.
Collapse
Affiliation(s)
- Yuwen Wang
- Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Shujun Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jia Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Biaobiao Fang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jie Yao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Binglin Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
7
|
Cai Y, Ruan J, Yao X, Zhao L, Wang B. MicroRNA-187 modulates epithelial-mesenchymal transition by targeting PTRF in non-small cell lung cancer. Oncol Rep 2017; 37:2787-2794. [PMID: 28393200 DOI: 10.3892/or.2017.5548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) that negatively regulate gene expression play a key role in the development and progression of cancer. Aberrant expression of hsa-miR-187 (miR-187) has been reported in various malignancies. However, the function of miR-187 in tumor progression remains controversial and its role in non-small cell lung cancer (NSCLC) is poorly understood. In the present study, the role of miR-187 in the progression of NSCLC was investigated. Our results revealed that miR-187 was frequently upregulated in NSCLC tissues and cells. Furthermore, ectopic introduction of miR-187 promoted cell migration, whereas miR-187 inhibitor had the contrary effect in NSCLC cells. Of significance, miR-187 induced epithelial-mesenchymal transition (EMT), which plays a pivotal role in the initiation of metastasis and activated mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathways. Polymerase I and transcript release factor (PTRF) was identified as a direct target of miR-187 in the promotion of the migration of NSCLC cells. Restored expression of PTRF neutralized the promoting effect of miR-187 on cell migration and EMT of NSCLC cells. Collectively, our data highlight the pivotal role of miR-187 in the progression of NSCLC, indicating this factor as a potential candidate in molecular cancer therapy.
Collapse
Affiliation(s)
- Yanjun Cai
- Department of Oncology, Jinan Clinical College of the Second Military Medical University, Jinan, Shandong, P.R. China
| | - Jian Ruan
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xueqing Yao
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, P.R. China
| | - Liang Zhao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Baocheng Wang
- Department of Oncology, Jinan Clinical College of the Second Military Medical University, Jinan, Shandong, P.R. China
| |
Collapse
|
8
|
Wu C, Zhuang Y, Jiang S, Tian F, Teng Y, Chen X, Zheng P, Liu S, Zhou J, Wu J, Wang R, Zou X. Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. Int J Biochem Cell Biol 2017; 84:58-74. [PMID: 28093328 DOI: 10.1016/j.biocel.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
Cinnamaldehyde, the main chemical component of the essential oil separated from the traditional herb Cinnamomum cassia, has been demonstrated to be an efficient cytotoxic agent against several human cancers. The present experiment showed that cinnamaldehyde dose-dependently depresses the proliferation of three types of NSCLC cells and induces cell apoptosis in vitro and in vivo. Moreover, cinnamaldehyde attenuated CoCl2-induced EMT and decreased matrix metalloprotease (MMP) family while the in vivo study showed the same trend. Mechanistically, cinnamaldehyde imitated the suppressive effect of XAV939 on cell motility and EMT which could be impaired by LiCl. Collectively, our research demonstrated for the first time that cinnamaldehyde is able to inhibit NSCLC cell growth by inducing apoptosis and reverse EMT through terminating Wnt/β-catenin pathway, which might supply further insight into cinnamaldehyde-mediated anti-tumor effect against NSCLC for better prognosis.
Collapse
MESH Headings
- A549 Cells
- Acrolein/administration & dosage
- Acrolein/analogs & derivatives
- Acrolein/pharmacology
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cobalt/toxicity
- Dose-Response Relationship, Drug
- Epithelial-Mesenchymal Transition/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Wnt Signaling Pathway/drug effects
- Xenograft Model Antitumor Assays
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Cunen Wu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Yuwen Zhuang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Shan Jiang
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Fang Tian
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Yuhao Teng
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Xu Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Peiqiu Zheng
- Liyang Hospital of Traditional Chinese Medicine, Liyang, Jiangsu 213300, China
| | - Shenlin Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Jinyong Zhou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Jian Wu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China
| | - Ruiping Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China.
| | - Xi Zou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
9
|
The Functional Haplotypes of CHRM3 Modulate mRNA Expression and Associate with Bladder Cancer among a Chinese Han Population in Kaohsiung City. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4052846. [PMID: 28053981 PMCID: PMC5174173 DOI: 10.1155/2016/4052846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
Bladder cancer is one of the major cancer types and both environmental factors and genetic background play important roles in its pathology. Kaohsiung is a high industrialized city in Taiwan, and here we focused on this region to evaluate the genetic effects on bladder cancer. Muscarinic acetylcholine receptor M3 (CHRM3) was reported as a key receptor in different cancer types. CHRM3 is located at 1q42-43 which was reported to associate with bladder cancer. Our study attempted to delineate whether genetic variants of CHRM3 contribute to bladder cancer in Chinese Han population in south Taiwan. Five selected SNPs (rs2165870, rs10802789, rs685550, rs7520974, and rs3738435) were genotyped for 30 bladder cancer patients and 60 control individuals and genetic association studies were performed. Five haplotypes (GTTAT, ATTGT, GCTAC, ACTAC, and ACCAC) were found significantly associated with low CHRM3 mRNA level and contributed to increased susceptibility of bladder cancer in Kaohsiung city after rigid 10000 consecutive permutation tests. To our knowledge, this is the first genetic association study that reveals the genetic contribution of CHRM3 gene in bladder cancer etiology.
Collapse
|
10
|
Han ML, Zhao YF, Tan CH, Xiong YJ, Wang WJ, Wu F, Fei Y, Wang L, Liang ZQ. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells. Acta Pharmacol Sin 2016; 37:1606-1622. [PMID: 27840408 DOI: 10.1038/aps.2016.93] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
AIM Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. METHODS Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. RESULTS Cisplatin or paclitaxel treatment (10-80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse model, the mice implanted with A549 cells overexpressing CTSL exhibited significantly reduced sensitivity to paclitaxel treatment, and increased expression of EMT-associated proteins and transcription factors in tumor tissues. CONCLUSION Cisplatin and paclitaxel resistance is associated with CTSL upregulation-induced EMT in A549 cells. Thus, CTSL-mediated EMT may be exploited as a target to enhance the efficacy of cisplatin or paclitaxel against lung cancer and other types of malignancies.
Collapse
|