1
|
Aranda RG, Fatima S, Rafid MI, McGill I, Hadwiger JA. Regulatory differences between atypical and typical MAP kinases in Dictyostelium discoideum. Cell Signal 2025; 130:111701. [PMID: 40020888 PMCID: PMC11908898 DOI: 10.1016/j.cellsig.2025.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Within the large family of mitogen activated protein kinases (MAPKs), one outlier group referred to as atypical MAPKs is not regulated by conventional upstream MAPK kinases (MAP2Ks). This includes the Dictyostelium discoideum atypical MAPK Erk2, a protein kinase essential for chemotactic movement and development. The regulation and functional specificity of Erk2 was investigated through phenotypic analysis of chimeric and mutant MAPKs. Chimeric MAPKs containing regions of Erk2 were created using complementary regions of the more typical MAPK Erk1, that provides very different functions in this amoeba. The chimeric MAPKs were not phosphorylated at levels observed for wild-type MAPKs and none rescued wild-type MAPK function to erk1- or erk2- cells. Endogenous Erk1 and Erk2 MAPKs were destabilized in cells expressing chimeric MAPKs containing the same carboxyl terminus. A carboxyl terminal motif conserved among atypical MAPKs was important but not essential for Erk2 regulation and function and the motif did not confer atypical MAPK regulation when present in Erk1. A kinase-dead version of Erk2 was phosphorylated in response to folate or cAMP chemotactic stimulation, suggesting Erk2 is activated in vivo by an upstream protein kinase, contrary to previous predictions of autophosphorylation. This regulation implies a protein kinase distinct from the single conventional MAP2K in Dictyostelium regulates atypical MAPK signaling. A non-activatable form of Erk2 was not capable of rescuing Erk2 function in erk2- cells. These findings suggest that the regulation of atypical and typical MAPKs is substantially different and carried out by distinct upstream protein kinases.
Collapse
Affiliation(s)
- Ramee G Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Md Ikram Rafid
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Imani McGill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America.
| |
Collapse
|
2
|
PENG NAIXIONG, CAI YUEFENG, CHEN DONG, DENG LING, ZHANG ZEJIAN, LI WEI. EGR1 inhibits clear cell renal cell carcinoma proliferation and metastasis via the MAPK15 pathway. Oncol Res 2025; 33:347-356. [PMID: 39866235 PMCID: PMC11753989 DOI: 10.32604/or.2024.056039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/12/2024] [Indexed: 01/28/2025] Open
Abstract
Background Clear cell renal carcinoma (ccRCC), the leading histological subtype of RCC, lacks any targeted therapy options. Although some studies have shown that early growth response factor 1 (EGR1) has a significant role in cancer development and progression, its role and underlying mechanisms in ccRCC remain poorly understood. Methods The Cancer Genome Atlas (TCGA) database was utilized to examine the expression of EGR1 in ccRCC. The expression of EGR1 in 55 ccRCC tissues was evaluated using immunohistochemistry. The link between EGR1 expression and clinicopathological variables was examined through an analysis. Gain-of-function assays were employed to investigate EGR1's biological functions in ccRCC cells, involving proliferation, colony formation, invasion assays, and tumorigenesis in nude mice. In order to assess the protein expression of mitogen-activated protein kinase 15 (MAPK15), E-cadherin, matrix metalloproteinase-9/-2 (MMP-9 and MMP-2), Western blot technique was applied. Results The results revealed a decrease in EGR1 expression in ccRCC tissues. This decrease was strongly linked to TNM stage, lymphatic metastasis, tumor size, histological grade, and unfavorable prognosis in ccRCC patients. It has been demonstrated that overexpressing EGR1 inhibits the growth of xenograft tumors in vivo and inhibits cell colony formation, motility, and invasion in vitro. Furthermore, EGR1 can prevent the development and movement of ccRCC cells by controlling the expression of MMP-2, MMP-9, E-cadherin, and MAPK15. Conclusions The EGR1/MAPK15 axis may represent a promising target for drug development, with EGR1 serving as a possible target for ccRCC therapy.
Collapse
Affiliation(s)
- NAIXIONG PENG
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - YUEFENG CAI
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - DONG CHEN
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - LING DENG
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - ZEJIAN ZHANG
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - WEI LI
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
3
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
4
|
Franci L, Vallini G, Bertolino FM, Cicaloni V, Inzalaco G, Cicogni M, Tinti L, Calabrese L, Barone V, Salvini L, Rubegni P, Galvagni F, Chiariello M. MAPK15 controls cellular responses to oxidative stress by regulating NRF2 activity and expression of its downstream target genes. Redox Biol 2024; 72:103131. [PMID: 38555711 PMCID: PMC10998232 DOI: 10.1016/j.redox.2024.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Oxidation processes in mitochondria and different environmental insults contribute to unwarranted accumulation of reactive oxygen species (ROS). These, in turn, rapidly damage intracellular lipids, proteins, and DNA, ultimately causing aging and several human diseases. Cells have developed different and very effective systems to control ROS levels. Among these, removal of excessive amounts is guaranteed by upregulated expression of various antioxidant enzymes, through activation of the NF-E2-Related Factor 2 (NRF2) protein. Here, we show that Mitogen Activated Protein Kinase 15 (MAPK15) controls the transactivating potential of NRF2 and, in turn, the expression of its downstream target genes. Specifically, upon oxidative stress, MAPK15 is necessary to increase NRF2 expression and nuclear translocation, by inducing its activating phosphorylation, ultimately supporting transactivation of cytoprotective antioxidant genes. Lungs are continuously exposed to oxidative damages induced by environmental insults such as air pollutants and cigarette smoke. Interestingly, we demonstrate that MAPK15 is very effective in supporting NRF2-dependent antioxidant transcriptional response to cigarette smoke of epithelial lung cells. Oxidative damage induced by cigarette smoke indeed represents a leading cause of disability and death worldwide by contributing to the pathogenesis of different chronic respiratory diseases and lung cancer. Therefore, the development of novel therapeutic strategies able to modulate cellular responses to oxidative stress would be highly beneficial. Our data contribute to the necessary understanding of the molecular mechanisms behind such responses and identify new potentially actionable targets.
Collapse
Affiliation(s)
- Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale Delle Ricerche (CNR), Siena, Italy; Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Siena, Italy.
| | - Giulia Vallini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Section of Dermatology, Department of Medical, Surgical and Neurological Science, University of Siena, Italy.
| | - Franca Maria Bertolino
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale Delle Ricerche (CNR), Siena, Italy; Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| | | | - Giovanni Inzalaco
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale Delle Ricerche (CNR), Siena, Italy; Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| | | | - Laura Tinti
- Toscana Life Sciences Foundation, Siena, Italy.
| | - Laura Calabrese
- Section of Dermatology, Department of Medical, Surgical and Neurological Science, University of Siena, Italy.
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | | | - Pietro Rubegni
- Section of Dermatology, Department of Medical, Surgical and Neurological Science, University of Siena, Italy.
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale Delle Ricerche (CNR), Siena, Italy; Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Siena, Italy.
| |
Collapse
|
5
|
Yang Y, Ma Q, Jin S, Huang B, Wang Z, Chen G. Identification of mapk genes, and their expression profiles in response to low salinity stress, in cobia (Rachycentron canadum). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110950. [PMID: 38307403 DOI: 10.1016/j.cbpb.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Mitogen-activated protein kinases (MAPKs) are a class of protein kinases that regulate various physiological processes, and play a crucial role in maintaining the osmotic equilibrium of fish. The objective of this study was to identify and characterize the mapk family genes in cobia (Rachycentron canadum) and examine their expression profiles under different low salinity stress regimes (acute: from 30‰ to 10‰ in 1 h, sub-chronic: from 30‰ to 10‰ over 4 d). A total of 12 cobia mapk genes (Rcmapks) were identified and cloned, including six erk subfamily genes (Rcmapk1/3/4/6/7/15), three jnk subfamily genes (Rcmapk8/9/10) and three p38 mapk subfamily genes (Rcmapk 11/13/14). Domain analysis indicated that the RcMAPKs possessed the typical domains including S_TKc and PKc_like domain. Phylogenetic analysis revealed that the Rcmapks were most closely related to those of the turbot (Scophthalmus maximus). The tissue distribution of mapk genes in adult cobia and the expression patterns of Rcmapks under different low salinity stress regimes were investigated using quantitative real-time PCR (qRT-PCR). The results revealed that Rcmapk3/9/10/11/13/14 exhibited a relatively broad expression distribution across 14 different tissues. For all these genes the highest expression level was in the brain, except for Rcmapk14 (highly expressed in the stomach, gill, and skin). The genes Rcmapk1/6/15 showed significantly higher expression in the testis. Under acute low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 was significantly altered in the gill, intestine, and trunk kidney, however, the aforementioned genes exhibited very different expression patterns among the three tissues. In the gill, most of the genes from the erk (Rcmapk3/6/7) and p38 mapk subfamily (Rcmapk11/13/14) were significantly up-regulated at almost all the time points (P < 0.05); Similarly, the expression of Rcmapk3/9/11/13/14 genes were significantly increased in the trunk kidney; while in the intestine, most of the altered genes (Rcmapk6/7/9/11/13/14) were significantly down-regulated at 1 h. Following the sub-chronic low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 genes were significantly altered in all three tissues. These findings provide important reference data for elucidating the roles of cobia mapk family genes in response to low salinity stress.
Collapse
Affiliation(s)
- Yunsheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shulei Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baosong Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Zhong QH, Lau ATY, Xu YM. Mitogen-Activated Protein Kinase 15 Is a New Predictive Biomarker and Potential Therapeutic Target for Ovarian Cancer. Int J Mol Sci 2023; 25:109. [PMID: 38203280 PMCID: PMC10778700 DOI: 10.3390/ijms25010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Mitogen-activated protein kinase 15 (MAPK15) has been reported to be associated with several cancers. This study aimed to explore for the first time on the relationship between MAPK15 expression and cancer progression/drug responsiveness in ovarian carcinoma. To this end, MAPK15 expression level was examined by immunohistochemistry (IHC) staining of an ovarian tissue array (10 normal and 70 malignant samples). Drug sensitivity of ovarian cancer cell lines (including OVCAR3 and SKOV3) was measured by MTS assay. The modulation of MAPK15 expression in OVCAR3 and SKOV3 was verified by immunoblot and real-time PCR analyses. The prognostic value of MAPK15 in ovarian cancer patients was assessed using the Kaplan-Meier Plotter database and Gene Expression Omnibus (GEO) datasets. The IHC results showed that MAPK15 expression was negatively associated with tumor grade, TNM stage, tumor size, and regional lymph node metastasis of ovarian carcinoma. Importantly, overexpressing MAPK15 increased cisplatin toxicity in ovarian carcinoma cells and online database analysis indicated that patients with high MAPK15 expression had favorable prognosis with/without chemotherapy. Taken together, our results indicate that a decreased MAPK15 expression is associated with advanced-stage ovarian cancer and unfavorable survival outcomes. MAPK15 may be a new biomarker for ovarian cancer, and the encouraging therapeutic strategy would be found by combining the regulation of MAPK15 expression.
Collapse
Affiliation(s)
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China;
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China;
| |
Collapse
|
7
|
Samare-Najaf M, Neisy A, Samareh A, Moghadam D, Jamali N, Zarei R, Zal F. The constructive and destructive impact of autophagy on both genders' reproducibility, a comprehensive review. Autophagy 2023; 19:3033-3061. [PMID: 37505071 PMCID: PMC10621263 DOI: 10.1080/15548627.2023.2238577] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Reproduction is characterized by a series of massive renovations at molecular, cellular, and tissue levels. Recent studies have strongly tended to reveal the involvement of basic molecular pathways such as autophagy, a highly conserved eukaryotic cellular recycling, during reproductive processes. This review comprehensively describes the current knowledge, updated to September 2022, of autophagy contribution during reproductive processes in males including spermatogenesis, sperm motility and viability, and male sex hormones and females including germ cells and oocytes viability, ovulation, implantation, fertilization, and female sex hormones. Furthermore, the consequences of disruption in autophagic flux on the reproductive disorders including oligospermia, azoospermia, asthenozoospermia, teratozoospermia, globozoospermia, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and other disorders related to infertility are discussed as well.Abbreviations: AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; E2: estrogen; EDs: endocrine disruptors; ER: endoplasmic reticulum; FSH: follicle stimulating hormone; FOX: forkhead box; GCs: granulosa cells; HIF: hypoxia inducible factor; IVF: in vitro fertilization; IVM: in vitro maturation; LCs: Leydig cells; LDs: lipid droplets; LH: luteinizing hormone; LRWD1: leucine rich repeats and WD repeat domain containing 1; MAP1LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-kB: nuclear factor kappa B; P4: progesterone; PCOS: polycystic ovarian syndrome; PDLIM1: PDZ and LIM domain 1; PI3K: phosphoinositide 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: class III phosphatidylinositol 3-kinase; POI: premature ovarian insufficiency; ROS: reactive oxygen species; SCs: Sertoli cells; SQSTM1/p62: sequestosome 1; TSGA10: testis specific 10; TST: testosterone; VCP: vasolin containing protein.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Asma Neisy
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Hadwiger JA, Aranda RG, Fatima S. Atypical MAP kinases - new insights and directions from amoeba. J Cell Sci 2023; 136:jcs261447. [PMID: 37850857 PMCID: PMC10617611 DOI: 10.1242/jcs.261447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been the focus of many studies over the past several decades, but the understanding of one subgroup of MAPKs, orthologs of MAPK15, known as atypical MAPKs, has lagged behind others. In most organisms, specific activating signals or downstream responses of atypical MAPK signaling pathways have not yet been identified even though these MAPKs are associated with many eukaryotic processes, including cancer and embryonic development. In this Review, we discuss recent studies that are shedding new light on both the regulation and function of atypical MAPKs in different organisms. In particular, the analysis of the atypical MAPK in the amoeba Dictyostelium discoideum has revealed important roles in chemotactic responses and gene regulation. The rapid and transient phosphorylation of the atypical MAPK in these responses suggest a highly regulated activation mechanism in vivo despite the ability of atypical MAPKs to autophosphorylate in vitro. Atypical MAPK function can also impact the activation of other MAPKs in amoeba. These advances are providing new perspectives on possible MAPK roles in animals that have not been previously considered, and this might lead to the identification of potential targets for regulating cell movement in the treatment of diseases.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
9
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Deniz O, Hasygar K, Hietakangas V. Cellular and physiological roles of the conserved atypical MAP kinase ERK7. FEBS Lett 2023; 597:601-607. [PMID: 36266944 DOI: 10.1002/1873-3468.14521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Extracellular signal-regulated kinase 7 (ERK7), also known as ERK8 and MAPK15, is an atypical member of the MAP kinase family. Compared with other MAP kinases, the biological roles of ERK7 remain poorly understood. Recent work, however, has revealed several novel functions for ERK7. These include a highly conserved essential role in ciliogenesis, the ability to control cell growth, metabolism and autophagy, as well as the maintenance of genomic integrity. ERK7 functions through phosphorylation-dependent and -independent mechanisms and it is activated by cellular stressors, including DNA-damaging agents, and nutrient deprivation. Here, we summarize recent developments in understanding ERK7 function, emphasizing its conserved roles in cellular and physiological regulation.
Collapse
Affiliation(s)
- Onur Deniz
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Kiran Hasygar
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| |
Collapse
|
11
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
12
|
Wu DD, Dai LJ, Tan HW, Zhao XY, Wei QY, Zhong QH, Ji YC, Yin XH, Yu FY, Jin DY, Li SQ, Lau AT, Xu YM. Transcriptional upregulation of MAPK15 by NF-κB signaling boosts the efficacy of combination therapy with cisplatin and TNF-α. iScience 2022; 25:105459. [PMID: 36425765 PMCID: PMC9678736 DOI: 10.1016/j.isci.2022.105459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
The efficacy of cisplatin in treating advanced non-small cell lung cancer is limited mainly because of insensitivity and/or acquired resistance. MAPK15, previously shown by us to enhance the sensitivity of the anti-cancer drug arsenic trioxide, could also enhance the sensitivity of other anti-cancer drugs. Here, we explore the potential role of MAPK15 in chemosensitivity to cisplatin in human lung cancer cells. Our results indicated that the expression level of MAPK15 was positively correlated with cisplatin sensitivity through affecting the DNA repair capacity of cisplatin-treated cells. The expression of MAPK15 was transcriptionally regulated by the TNF-α-activated NF-κB signaling pathway, and TNF-α synergized with cisplatin, in a MAPK15-dependent manner, to exert cytotoxicity in vitro and in vivo. Therefore, levels of TNF-α dictate the responsiveness/sensitivity of lung cancer cells to cisplatin by transcriptionally upregulating MAPK15 to enhance chemosensitivity, suggesting manipulation of MAPK15 as a strategy to improve the therapeutic efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Li-Juan Dai
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yan-Chen Ji
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Fei-Yuan Yu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Sheng-Qing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People’s Republic of China
| | - Andy T.Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| |
Collapse
|
13
|
Franci L, Tubita A, Bertolino FM, Palma A, Cannino G, Settembre C, Rasola A, Rovida E, Chiariello M. MAPK15 protects from oxidative stress-dependent cellular senescence by inducing the mitophagic process. Aging Cell 2022; 21:e13620. [PMID: 35642724 PMCID: PMC9282834 DOI: 10.1111/acel.13620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are the major source of reactive oxygen species (ROS), whose aberrant production by dysfunctional mitochondria leads to oxidative stress, thus contributing to aging as well as neurodegenerative disorders and cancer. Cells efficiently eliminate damaged mitochondria through a selective type of autophagy, named mitophagy. Here, we demonstrate the involvement of the atypical MAP kinase family member MAPK15 in cellular senescence, by preserving mitochondrial quality, thanks to its ability to control mitophagy and, therefore, prevent oxidative stress. We indeed demonstrate that reduced MAPK15 expression strongly decreases mitochondrial respiration and ATP production, while increasing mitochondrial ROS levels. We show that MAPK15 controls the mitophagic process by stimulating ULK1‐dependent PRKN Ser108 phosphorylation and inducing the recruitment of damaged mitochondria to autophagosomal and lysosomal compartments, thus leading to a reduction of their mass, but also by participating in the reorganization of the mitochondrial network that usually anticipates their disposal. Consequently, MAPK15‐dependent mitophagy protects cells from accumulating nuclear DNA damage due to mitochondrial ROS and, consequently, from senescence deriving from this chronic DNA insult. Indeed, we ultimately demonstrate that MAPK15 protects primary human airway epithelial cells from senescence, establishing a new specific role for MAPK15 in controlling mitochondrial fitness by efficient disposal of old and damaged organelles and suggesting this kinase as a new potential therapeutic target in diverse age‐associated human diseases.
Collapse
Affiliation(s)
- Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC) Consiglio Nazionale delle Ricerche (CNR) Siena Italy
- Core Research Laboratory (CRL) Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO) Siena Italy
- Department of Medical Biotechnologies University of Siena Siena Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences University of Firenze Firenze Italy
| | - Franca Maria Bertolino
- Istituto di Fisiologia Clinica (IFC) Consiglio Nazionale delle Ricerche (CNR) Siena Italy
- Core Research Laboratory (CRL) Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO) Siena Italy
| | - Alessandro Palma
- Department of Onco‐hematology, Gene and Cell Therapy Bambino Gesù Children’s Hospital–IRCCS Rome Italy
| | - Giuseppe Cannino
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM) Pozzuoli Italy
- Department of Clinical Medicine and Surgery University of Napoli Federico II Napoli Italy
| | - Andrea Rasola
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences University of Firenze Firenze Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC) Consiglio Nazionale delle Ricerche (CNR) Siena Italy
- Core Research Laboratory (CRL) Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO) Siena Italy
| |
Collapse
|
14
|
Cheng L, Wang T, Gao Z, Wu W, Cao Y, Wang L, Zhang Q. Study on the Protective Effect of Schizandrin B against Acetaminophen-Induced Cytotoxicity in Human Hepatocyte. Biol Pharm Bull 2022; 45:596-604. [DOI: 10.1248/bpb.b21-00965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ling Cheng
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Tingting Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine
| | - Zhiling Gao
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Wenkai Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Yezhi Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Linghu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Qi Zhang
- Institute of Surgery, Anhui Academy of Chinese Medicine
| |
Collapse
|
15
|
Morra F, Merolla F, Zito Marino F, Catalano R, Franco R, Chieffi P, Celetti A. The tumour suppressor CCDC6 is involved in ROS tolerance and neoplastic transformation by evading ferroptosis. Heliyon 2021; 7:e08399. [PMID: 34841108 PMCID: PMC8605351 DOI: 10.1016/j.heliyon.2021.e08399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022] Open
Abstract
Coiled-coil domain containing 6 (CCDC6) is a tumour suppressor gene involved in apoptosis and DNA damage response. CCDC6 is known to be functionally impaired upon gene fusions, somatic mutations, and altered protein turnover in several tumours. Testicular germ cell tumours are among the most common malignancies in young males. Despite the high cure rate, achieved through chemotherapy and/or surgery, drug resistance can still occur. In a human cellular model of testis Embryonal Carcinoma, the deficiency of CCDC6 was associated with defects in DNA repair via homologous recombination and sensitivity to PARP1/2 inhibitors. Same data were obtained in a panel of murine testicular cell lines, including Sertoli, Spermatogonia and Spermatocytes. In these cells, upon oxidative damage exposure, the absence of CCDC6 conferred tolerance to reactive oxygen species affecting regulated cell death pathways by apoptosis and ferroptosis. At molecular level, the loss of CCDC6 was associated with an enhancement of the xCT/SLC7A11 cystine antiporter expression which, by promoting the accumulation of ROS, interfered with the activation of ferroptosis pathway. In conclusion, our data suggest that the CCDC6 downregulation could aid the testis germ cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants contributing to testicular neoplastic growth. Novel therapeutic options will be discussed.
Collapse
Affiliation(s)
- Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Rosaria Catalano
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Renato Franco
- Pathology Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
16
|
MAPK15 Controls Hedgehog Signaling in Medulloblastoma Cells by Regulating Primary Ciliogenesis. Cancers (Basel) 2021; 13:cancers13194903. [PMID: 34638386 PMCID: PMC8508543 DOI: 10.3390/cancers13194903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
In medulloblastomas, genetic alterations resulting in over-activation and/or deregulation of proteins involved in Hedgehog (HH) signaling lead to cellular transformation, which can be prevented by inhibition of primary ciliogenesis. Here, we investigated the role of MAPK15 in HH signaling and, in turn, in HH-mediated cellular transformation. We first demonstrated, in NIH3T3 mouse fibroblasts, the ability of this kinase of controlling primary ciliogenesis and canonical HH signaling. Next, we took advantage of transformed human medulloblastoma cells belonging to the SHH-driven subtype, i.e., DAOY and ONS-76 cells, to ascertain the role for MAPK15 in HH-mediated cellular transformation. Specifically, medullo-spheres derived from these cells, an established in vitro model for evaluating progression and malignancy of putative tumor-initiating medulloblastoma cells, were used to demonstrate that MAPK15 regulates self-renewal of these cancer stem cell-like cells. Interestingly, by using the HH-related oncogenes SMO-M2 and GLI2-DN, we provided evidences that disruption of MAPK15 signaling inhibits oncogenic HH overactivation in a specific cilia-dependent fashion. Ultimately, we show that pharmacological inhibition of MAPK15 prevents cell proliferation of SHH-driven medulloblastoma cells, overall suggesting that oncogenic HH signaling can be counteracted by targeting the ciliary gene MAPK15, which could therefore be considered a promising target for innovative "smart" therapies in medulloblastomas.
Collapse
|
17
|
Zhang M, Fang L, Zhou L, Molino A, Valentino MR, Yang S, Zhang J, Li Y, Roth M. MAPK15-ULK1 signaling regulates mitophagy of airway epithelial cell in chronic obstructive pulmonary disease. Free Radic Biol Med 2021; 172:541-549. [PMID: 34224814 DOI: 10.1016/j.freeradbiomed.2021.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Airway epithelial mitochondrial oxidative stress and damage is an important pathology in chronic obstructive pulmonary disease (COPD). Mitophagy involves MAPK15-ULK1 signaling, the role of which is unknown in COPD. This study investigated MAPK15-ULK1 signaling in airway epithelial cells of COPD patients and its activation by cigarette smoke extract (CSE) in isolated human airway epithelial cells. Significant increased phosphorylation of MAPK15 and ULK1 (Ser555) was detected in the airway epithelium of COPD patients. This pathology was maintained in isolated primary COPD-epithelial cells. Compared to control cells, the protein expression of Beclin1 and the ratio of LC3II to LC3I were both significantly increased in COPD-epithelial cells. In human airway epithelial cells, CSE significantly increased the phosphorylation of MAPK15, ULK1 (Ser555), the expression of Beclin1, and the LC3II/LC3I ratio in a concentration- and time-dependent manner. Transfection with MAPK15 siRNA significantly inhibited the CSE-induced ULK1 (Ser555) phosphorylation in airway epithelial cells. Silencing of MAPK15 or ULK1 significantly reduced CSE-induced mitophagy and mitochondrial oxidative stress, thereby improving cell viability. In summary, cigarette smoke activated MAPK15-ULK1 signaling, thereby promoting mitophagy and mitochondrial oxidative stress in airway epithelial cells. This signaling pathway is activated in COPD-epithelial cells and therefore might present a novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland
| | - Lei Fang
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland
| | - Liang Zhou
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland
| | - Antonio Molino
- Department of Respiratory Diseases, University of Naples, Federico II, Naples, Italy
| | | | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yali Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Michael Roth
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland.
| |
Collapse
|
18
|
Hasygar K, Deniz O, Liu Y, Gullmets J, Hynynen R, Ruhanen H, Kokki K, Käkelä R, Hietakangas V. Coordinated control of adiposity and growth by anti-anabolic kinase ERK7. EMBO Rep 2021; 22:e49602. [PMID: 33369866 PMCID: PMC7857433 DOI: 10.15252/embr.201949602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient-regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ERK7 mutant larvae display elevated triacylglycerol (TAG) stores and accelerated growth rate, while overexpressed ERK7 is sufficient to inhibit lipid storage and growth. ERK7 expression is elevated upon fasting and ERK7 mutant larvae display impaired survival during nutrient deprivation. ERK7 acts in the fat body, the insect counterpart of liver and adipose tissue, where it controls the subcellular localization of chromatin-binding protein PWP1, a growth-promoting downstream effector of mTOR. PWP1 maintains the expression of sugarbabe, encoding a lipogenic Gli-similar family transcription factor. Both PWP1 and Sugarbabe are necessary for the increased growth and adiposity phenotypes of ERK7 loss-of-function animals. In conclusion, ERK7 is an anti-anabolic kinase that inhibits lipid storage and growth while promoting survival on fasting conditions.
Collapse
Affiliation(s)
- Kiran Hasygar
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Onur Deniz
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Ying Liu
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Josef Gullmets
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Riikka Hynynen
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki University Lipidomics Unit (HiLIPID)Helsinki Institute for Life Science (HiLIFE) and Biocenter FinlandHelsinkiFinland
| | - Krista Kokki
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki University Lipidomics Unit (HiLIPID)Helsinki Institute for Life Science (HiLIFE) and Biocenter FinlandHelsinkiFinland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
19
|
Giwa A, Fatai A, Gamieldien J, Christoffels A, Bendou H. Identification of novel prognostic markers of survival time in high-risk neuroblastoma using gene expression profiles. Oncotarget 2020; 11:4293-4305. [PMID: 33245713 PMCID: PMC7679032 DOI: 10.18632/oncotarget.27808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. Patients in high-risk group often have poor outcomes with low survival rates despite several treatment options. This study aimed to identify a genetic signature from gene expression profiles that can serve as prognostic indicators of survival time in patients of high-risk neuroblastoma, and that could be potential therapeutic targets. RNA-seq count data was downloaded from UCSC Xena browser and samples grouped into Short Survival (SS) and Long Survival (LS) groups. Differential gene expression (DGE) analysis, enrichment analyses, regulatory network analysis and machine learning (ML) prediction of survival group were performed. Forty differentially expressed genes (DEGs) were identified including genes involved in molecular function activities essential for tumor proliferation. DEGs used as features for prediction of survival groups included EVX2, NHLH2, PRSS12, POU6F2, HOXD10, MAPK15, RTL1, LGR5, CYP17A1, OR10AB1P, MYH14, LRRTM3, GRIN3A, HS3ST5, CRYAB and NXPH3. An accuracy score of 82% was obtained by the ML classification models. SMIM28 was revealed to possibly have a role in tumor proliferation and aggressiveness. Our results indicate that these DEGs can serve as prognostic indicators of survival in high-risk neuroblastoma patients and will assist clinicians in making better therapeutic and patient management decisions.
Collapse
Affiliation(s)
- Abdulazeez Giwa
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Azeez Fatai
- Department of Biochemistry, Lagos State University, Lagos, Nigeria
| | - Junaid Gamieldien
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Hocine Bendou
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
20
|
Motylewska E, Braun M, Kazimierczuk Z, Ławnicka H, Stępień H. IGF1R and MAPK15 Emerge as Potential Targets of Pentabromobenzylisothioureas in Lung Neuroendocrine Neoplasms. Pharmaceuticals (Basel) 2020; 13:ph13110354. [PMID: 33138224 PMCID: PMC7692632 DOI: 10.3390/ph13110354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
Pentabromobenzylisothioureas are antitumor agents with diverse properties, including the inhibition of MAPK15, IGF1R and PKD1 kinases. Their dysregulation has been implicated in the pathogenesis of several cancers, including bronchopulmonary neuroendocrine neoplasms (BP-NEN). The present study assesses the antitumor potential of ZKKs, a series of pentabromobenzylisothioureas, on the growth of the lung carcinoid H727 cell line. It also evaluates the expression of MAPK15, IGF1R and PKD1 kinases in different BP-NENs. The viability of the H727 cell line was assessed by colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) and its proliferation by BrdU (5-bromo-2′-deoxyuridine) assay. Tissue kinase expression was measured using TaqMan-based RT-PCR and immunohistochemistry. ZKKs (10−4 to 10−5 M) strongly inhibited H727 cell viability and proliferation and their antineoplastic effects correlated with their concentrations (p < 0.001). IGF1R and MAPK15 were expressed at high levels in all subtypes of BP-NENs. In addition, the SCLC (small cell lung carcinoma) patients demonstrated higher mRNA levels of IGF1R (p = 0.010) and MAPK15 (p = 0.040) than the other BP-NEN groups. BP-NENs were characterized by low PKD1 expression, and lung neuroendocrine cancers demonstrated lower PKD1 mRNA levels than carcinoids (p = 0.003). ZKKs may suppress BP-NEN growth by inhibiting protein kinase activity. Our results suggest also a possible link between high IGF1R and MAPK15 expression and the aggressive phenotype of BP-NEN tumors.
Collapse
Affiliation(s)
- Ewelina Motylewska
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.M.); (H.Ł.)
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Zygmunt Kazimierczuk
- Department of Chemistry, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-787 Warsaw, Poland;
| | - Hanna Ławnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.M.); (H.Ł.)
| | - Henryk Stępień
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.M.); (H.Ł.)
- Correspondence: ; Tel.: +48-42-201-4412
| |
Collapse
|
21
|
Su Z, Yang B, Zeng Z, Zhu S, Wang C, Lei S, Jiang Y, Lin L. Metastasis-associated gene MAPK15 promotes the migration and invasion of osteosarcoma cells via the c-Jun/MMPs pathway. Oncol Lett 2020; 20:99-112. [PMID: 32565938 PMCID: PMC7285714 DOI: 10.3892/ol.2020.11544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common and destructive primary bone malignancy to affect children and adolescents. Metastases remain the primary cause of death in patients with OS. In the present study, weight gene co-expressed network analysis (WGCNA) and differentially-expressed gene analysis were used to identify key genes associated with the metastasis of OS. Reverse transcription-quantitative PCR and immunohistochemical staining were then used to detect the expression levels of these key genes in OS tissues, and to determine the hub genes of interest. Wound-healing and transwell assays, in addition to a lung metastasis model, were used to detect the effects of the hub genes on OS cell proliferation and metastasis in vitro and in vivo. Using WGCNA and differential expression analysis, deleted in lung and esophageal cancer protein 1 (DLEC1), Forkhead box J1 (FOXJ1) and mitogen-activated protein kinase 15 (MAPK15) were predicted to be key metastasis-associated genes, and highly expressed in metastatic OS tissues; among them, the protein and mRNA expression levels of MAPK15 were most significantly increased in our OS tissues from patients who exhibited metastases at diagnosis, and thus MAPK15 was determined to be a metastasis-associated hub gene to further study. Furthermore, inhibiting MAPK15 expression significantly decreased OS cell metastasis in vitro and in vivo, as well as suppressing c-Jun/matrix metalloproteinase (MMP)-associated pathways. Overexpression of MAPK15 activated the c-Jun/MMPs pathway and promoted OS cell metastasis, while inhibition of c-Jun blocked this effect. Taken together, MAPK15 was indicated to be an OS metastasis-associated gene, and was confirmed to promote the migration and invasion of OS cells via the c-Jun/MMP pathway. MAPK15 may therefore be an effective target for the treatment of OS.
Collapse
Affiliation(s)
- Zexin Su
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Bingsheng Yang
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shuang Zhu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| | - Chenyang Wang
- Department of Neurosurgery, Zhujiang Hospital, Neurosurgery Institute of Guangdong Province, Key Laboratory on Brain Function Repair and Rehabilitation, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yongfa Jiang
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Lijun Lin
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
22
|
Das MK, Kleppa L, Haugen TB. Functions of genes related to testicular germ cell tumour development. Andrology 2019; 7:527-535. [DOI: 10.1111/andr.12663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- M. K. Das
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
- Department of Molecular Medicine, Faculty of Medicine; University of Oslo; Oslo Norway
| | - L. Kleppa
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| | - T. B. Haugen
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| |
Collapse
|
23
|
Criscuolo D, Morra F, Giannella R, Visconti R, Cerrato A, Celetti A. New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. J Exp Clin Cancer Res 2019; 38:91. [PMID: 30791940 PMCID: PMC6385418 DOI: 10.1186/s13046-019-1089-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Novel therapeutic strategies are urgently needed for the treatment of metastatic Urothelial Bladder Cancer. DNA damaging repair (DDR) targeting has been introduced in cinical trials for bladder cancer patients that carry alterations in homologous DNA repair genes, letting to envisage susceptibility to the Poly (adenosine diphosphate [ADP]) ribose polymerase (PARP) inhibitors. MAIN BODY PARP inhibition, by amplifying the DNA damage, augments the mutational burden and promotes the immune priming of the tumor by increasing the neoantigen exposure and determining upregulation of programmed death ligand 1 (PD-L1) expression. Thus, the combination of PARP-inhibition and the PD/PD-L1 targeting may represent a compelling strategy to treat bladder cancer and has been introduced in recent clinical trials. The targeting of DDR has been also used in combination with epigenetic drugs able to modulate the expression of genes involved in DDR, and also able to act as immunomodulator agents suggesting their use in combination with immune-checkpoint inhibitors. CONCLUSION In conclusion, it may be envisaged the combination of three classes of drugs to treat bladder cancer, by targeting the DDR process in a tumor context of DDR defect, together with epigenetic agents and immune-checkpoint inhibitors, whose association may amplify the effects and reduce the doses and the toxicity of each single drug.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | | | - Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Aniello Cerrato
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
24
|
Li Z, Li N, Shen L, Fu J. Quantitative Proteomic Analysis Identifies MAPK15 as a Potential Regulator of Radioresistance in Nasopharyngeal Carcinoma Cells. Front Oncol 2018; 8:548. [PMID: 30524968 PMCID: PMC6262088 DOI: 10.3389/fonc.2018.00548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Since resistance to radiotherapy remains refractory for the clinical management of nasopharyngeal cancer (NPC), further understanding the mechanisms of radioresistance is necessary in order to develop more effective NPC treatment and improve prognosis. In this study, an integrated quantitative proteomic approach involving tandem mass tag labeling and liquid chromatograph-mass spectrometer was used to identify proteins potentially responsible for the radioresistance of NPC. The differential radiosensitivity in NPC model cells was examined through clonogenic survival assay, CCK-8 viability assay, and BrdU incorporation analysis. Apoptosis of NPC cells after exposure to irradiation was detected using caspase-3 colorimetric assay. Intracellular reactive oxygen species (ROS) was detected by a dichlorofluorescin diacetate fluorescent probe. In total, 5,946 protein groups were identified, among which 5,185 proteins were quantified. KEGG pathway analysis and protein-protein interaction enrichment analysis revealed robust activation of multiple biological processes/pathways in radioresistant CNE2-IR cells. Knockdown of MAPK15, one up-regulated protein kinase in CNE2-IR cells, significantly impaired clonogenic survival, decreased cell viability and increased cell apoptosis following exposure to irradiation, while over-expression of MAPK15 promoted cell survival, induced radioresistance and reduced apoptosis in NPC cell lines CNE1, CNE2, and HONE1. MAPK15 might regulate radioresistance through attenuating ROS accumulation and promoting DNA damage repair after exposure to irradiation in NPC cells. Quantitative proteomic analysis revealed enormous metabolic processes/signaling networks were potentially involved in the radioresistance of NPC cells. MAPK15 might be a novel potential regulator of radioresistance in NPC cells, and targeting MAPK15 might be useful in sensitizing NPC cells to radiotherapy.
Collapse
Affiliation(s)
| | | | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Jun Fu
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
25
|
Leonardi M, Perna E, Tronnolone S, Colecchia D, Chiariello M. Activated kinase screening identifies the IKBKE oncogene as a positive regulator of autophagy. Autophagy 2018; 15:312-326. [PMID: 30289335 PMCID: PMC6333447 DOI: 10.1080/15548627.2018.1517855] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is one of the major responses to stress in eukaryotic cells and is implicated in several pathological conditions such as infections, neurodegenerative diseases and cancer. Interestingly, cancer cells take full advantage of autophagy both to support tumor growth in adverse microenvironments and to oppose damages induced by anti-neoplastic therapies. Importantly, different human oncogenes are able to modulate this survival mechanism to support the transformation process, ultimately leading to 'autophagy addiction'. Still, oncogenic signaling events, impinging on the control of autophagy, are poorly characterized, limiting our possibilities to take advantage of these mechanisms for therapeutic purposes. Here, we screened a library of activated kinases for their ability to stimulate autophagy. By this approach, we identified novel potential regulators of the autophagic process and, among them, the IKBKE oncogene. Specifically, we demonstrate that this oncoprotein is able to stimulate autophagy when overexpressed, an event frequently found in breast tumors, and that its activity is strictly required for breast cancer cells to support the autophagic process. Interestingly, different oncogenic pathways typically involved in breast cancer, namely ERBB2 and PI3K-AKT-MTOR, also rely on IKBKE to control this process. Ultimately, we show that IKBKE-dependent autophagy is necessary for breast cancer cell proliferation, suggesting an important supporting role for this oncogene and autophagy in these tumors. Abbreviations: AAK1: AP2 associated kinase 1; AMPK: 5'-prime-AMP-activated protein kinase; AKT1: AKT serine/threonine kinase 1; BAF: bafilomycin A1; CA: constitutively activated; CDK17: cyclin dependent kinase 17; CDK18: cyclin dependent kinase 18; CHUK: conserved helix-loop-helix ubiquitous kinase; EGF: epidermal growth factor; ERBB2: erb-b2 receptor tyrosine kinase 2; FGF: fibroblast growth factor; FM: full medium; GALK2: galactokinase 2; IKBKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKE: inhibitor of nuclear factor kappa B kinase subunit epsilon; IKK: IκB kinase complex; KD: kinase dead; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK1: mitogen-activated protein kinase 1; MAPK15: mitogen-activated protein kinase 15; MTORC1: mammalian target of rapamycin kinase complex 1; myr: myristoylation/myristoylated; NFKBIA: NFKB inhibitor alpha; PDGF: platelet derived growth factor; PFKL: phosphofructokinase, liver type; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; PRKCD: protein kinase C delta; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Margherita Leonardi
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,b Università degli Studi di Siena , Siena , Italy
| | - Eluisa Perna
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,c Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine , University of Leuven , Leuven , Belgium
| | - Serena Tronnolone
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy
| | - David Colecchia
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,d Istituto di Fisiologia Clinica , Consiglio Nazionale delle Ricerche , Siena , Italy.,e TargImmune Therapeutics , Basel , Switzerland
| | - Mario Chiariello
- a Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO) , Siena , Italy.,d Istituto di Fisiologia Clinica , Consiglio Nazionale delle Ricerche , Siena , Italy
| |
Collapse
|
26
|
Colecchia D, Dapporto F, Tronnolone S, Salvini L, Chiariello M. MAPK15 is part of the ULK complex and controls its activity to regulate early phases of the autophagic process. J Biol Chem 2018; 293:15962-15976. [PMID: 30131341 DOI: 10.1074/jbc.ra118.002527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy, a pathway for bulk protein degradation and removal of damaged organelles, represents one of the major responses of cells to stress, thereby exerting a strict control on their correct functioning. Consequently, this process has been involved in the pathogenesis and therapeutic responses of several human diseases. Mitogen-activated protein (MAP) kinase 15 (MAPK15) is an atypical member of the MAP kinase family that recently emerged as a key modulator of autophagy and, through this, of cell transformation. Still, no information is available about signaling pathways mediating the effect of MAPK15 on this process, nor is it known which phase of autophagosome biogenesis is affected by this MAP kinase. Here, we demonstrate that MAPK15 stimulated 5'-AMP-activated protein kinase-dependent activity of UNC-51-like kinase 1 (ULK1), the only protein kinase among the ATG-related proteins, toward downstream substrates and signaling intermediates. Importantly, MAPK15 directly interacted with the ULK1 complex and mediated ULK1 activation induced by starvation, a classical stimulus for the autophagic process. In turn, ULK1 and its highly homologous protein ULK2 are able to transduce MAPK15 signals stimulating early phases of autophagosomal biogenesis in a multikinase cascade that offers numerous potential targets for future therapeutic intervention in cancer and other autophagy-related human diseases.
Collapse
Affiliation(s)
- David Colecchia
- From the Consiglio Nazionale delle Ricerche (CNR), Istituto di Fisiologia Clinica (IFC), Siena 53100.,the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100
| | - Francesca Dapporto
- the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100.,the Università degli Studi di Siena, Siena 53100, and
| | - Serena Tronnolone
- the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100
| | - Laura Salvini
- the Toscana Life Sciences Foundation, Siena 53100, Italy
| | - Mario Chiariello
- From the Consiglio Nazionale delle Ricerche (CNR), Istituto di Fisiologia Clinica (IFC), Siena 53100, .,the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100
| |
Collapse
|
27
|
Colecchia D, Stasi M, Leonardi M, Manganelli F, Nolano M, Veneziani BM, Santoro L, Eskelinen EL, Chiariello M, Bucci C. Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B. Autophagy 2018; 14:930-941. [PMID: 29130394 PMCID: PMC6103410 DOI: 10.1080/15548627.2017.1388475] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.
Collapse
Affiliation(s)
- David Colecchia
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Mariangela Stasi
- b Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Lecce , Italy
| | - Margherita Leonardi
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Fiore Manganelli
- c Department of Neurosciences , University of Naples "Federico II" , Naples , Italy
| | - Maria Nolano
- d Salvatore Maugeri Foundation , Institute of Telese Terme , Benevento , Italy
| | - Bianca Maria Veneziani
- e Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| | - Lucio Santoro
- c Department of Neurosciences , University of Naples "Federico II" , Naples , Italy
| | - Eeva-Liisa Eskelinen
- f Department of Biosciences, Division of Biochemistry and Biotechnology , University of Helsinki , Helsinki , Finland
| | - Mario Chiariello
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Cecilia Bucci
- b Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Lecce , Italy
| |
Collapse
|
28
|
Singh T, Agarwal T, Ghosh SK. Identification and functional analysis of a stress-responsive MAPK15 in Entamoeba invadens. Mol Biochem Parasitol 2018; 222:34-44. [PMID: 29730364 DOI: 10.1016/j.molbiopara.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023]
Abstract
E. histolytica, a protozoan parasite is the causative agent of amoebiasis in human beings. It exists in two different forms - the motile trophozoite form which undergoes encystation under starvation conditions to form the non-motile, osmotically resistant cyst form. Cellular stresses stimulate several signaling cascades which assist the parasite in counter-attacking such conditions thereby, promoting cell survival. To study the stress-associated pathways activated during encystation, we have used Entamoeba invadens, a reptilian parasite as a model organism because of its ability to undergo encystation under in vitro conditions. In this study, we have identified a stress-responsive MAPK which gets upregulated under different stress conditions, including encystation. Sequence analysis and phylogenetic classification show that the MAPK belongs to the atypical MAPK15 family (henceforth, named EiMAPK15), which does not require an upstream MAPKK for its phosphorylation and activation. The in vitro kinase activity of recombinant EiMAPK15 exhibits its auto-phosphorylation ability. Immunolocalization studies reveal that the protein is mainly cytosolic under normal growing conditions but gets translocated into the nucleus under stress conditions. Knockdown of EiMAPK15 using double-stranded RNA was found to reduce the expression of other encystation-specific genes which in turn, resulted in the decline of the overall encystation efficiency of the cells. Overall, the present work has laid the platform for further characterization of this important MAPK gene in Entamoeba invadens.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
29
|
Cerrato A, Visconti R, Celetti A. The rationale for druggability of CCDC6-tyrosine kinase fusions in lung cancer. Mol Cancer 2018; 17:46. [PMID: 29455670 PMCID: PMC5817729 DOI: 10.1186/s12943-018-0799-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Gene fusions occur in up to 17% of solid tumours. Oncogenic kinases are often involved in such fusions. In lung cancer, almost 30% of patients carrying an activated oncogene show the fusion of a tyrosine kinase to an heterologous gene. Several genes are partner in the fusion with the three kinases ALK, ROS1 and RET in lung. The impaired function of the partner gene, in combination with the activation of the kinase, may alter the cell signaling and promote the cancer cell addiction to the oncogene. Moreover, the gene that is partner in the fusion to the kinase may affect the response to therapeutics and/or promote resistance in the cancer cells. Few genes are recurrent partners in tyrosine kinase fusions in lung cancer, including CCDC6, a recurrent partner in ROS1 and RET fusions, that can be selected as possible target for new strategies of combined therapy including TKi.
Collapse
Affiliation(s)
- Aniello Cerrato
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy.
| | - Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
30
|
Pietrobono S, Santini R, Gagliardi S, Dapporto F, Colecchia D, Chiariello M, Leone C, Valoti M, Manetti F, Petricci E, Taddei M, Stecca B. Targeted inhibition of Hedgehog-GLI signaling by novel acylguanidine derivatives inhibits melanoma cell growth by inducing replication stress and mitotic catastrophe. Cell Death Dis 2018; 9:142. [PMID: 29396391 PMCID: PMC5833413 DOI: 10.1038/s41419-017-0142-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Aberrant activation of the Hedgehog (HH) signaling is a critical driver in tumorigenesis. The Smoothened (SMO) receptor is one of the major upstream transducers of the HH pathway and a target for the development of anticancer agents. The SMO inhibitor Vismodegib (GDC-0449/Erivedge) has been approved for treatment of basal cell carcinoma. However, the emergence of resistance during Vismodegib treatment and the occurrence of numerous side effects limit its use. Our group has recently discovered and developed novel and potent SMO inhibitors based on acylguanidine or acylthiourea scaffolds. Here, we show that the two acylguanidine analogs, compound (1) and its novel fluoride derivative (2), strongly reduce growth and self-renewal of melanoma cells, inhibiting the level of the HH signaling target GLI1 in a dose-dependent manner. Both compounds induce apoptosis and DNA damage through the ATR/CHK1 axis. Mechanistically, they prevent G2 to M cell cycle transition, and induce signs of mitotic aberrations ultimately leading to mitotic catastrophe. In a melanoma xenograft mouse model, systemic treatment with 1 produced a remarkable inhibition of tumor growth without body weight loss in mice. Our data highlight a novel route for cell death induction by SMO inhibitors and support their use in therapeutic approaches for melanoma and, possibly, other types of cancer with active HH signaling.
Collapse
Affiliation(s)
| | - Roberta Santini
- Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy
| | | | - Francesca Dapporto
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Core Research Laboratory, Istituto Toscano Tumori, AOU Senese, Siena, Italy
| | - David Colecchia
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Core Research Laboratory, Istituto Toscano Tumori, AOU Senese, Siena, Italy
| | - Mario Chiariello
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Core Research Laboratory, Istituto Toscano Tumori, AOU Senese, Siena, Italy
| | - Cosima Leone
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Taddei
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Barbara Stecca
- Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy. .,Department of Oncology, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
31
|
Lau ATY, Xu YM. Regulation of human mitogen-activated protein kinase 15 (extracellular signal-regulated kinase 7/8) and its functions: A recent update. J Cell Physiol 2018; 234:75-88. [PMID: 30070699 DOI: 10.1002/jcp.27053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Abstract
Mitogen-activated protein kinase 15 (MAPK15), originally also known as extracellular signal-regulated kinase 7/8, is the most recently identified atypical MAPK and the least studied so far. Examinations of the role of MAPK15 in various cell lines and model systems indicate that MAPK15 participates in a variety of cellular activities such as promoting cell proliferation, cell transformation, and apoptosis; stimulating autophagy; regulating cell division, ciliogenesis, and protein secretion; and maintaining genome stability. As multiple roles of MAPK15 were observed among these studies, therefore, it remains unclear whether MAPK15 acts as a proto-oncogene or tumor suppressor. Here, the recent literature on human MAPK15 and the resulting functions will be discussed.
Collapse
Affiliation(s)
- Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
32
|
Chang RK, Li X, Mu N, Hrydziuszko O, Garcia-Majano B, Larsson C, Lui WO. MicroRNA expression profiles in non‑epithelial ovarian tumors. Int J Oncol 2018; 52:55-66. [PMID: 29138809 PMCID: PMC5743337 DOI: 10.3892/ijo.2017.4200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian germ cell tumors (OGCTs) and sex cord stromal tumors (SCSTs) are rare gynecologic tumors that are derived from germ and stromal cells, respectively. Unlike their epithelial counterparts, molecular pathogenesis of these tumor types is still poorly understood. Here, we characterized microRNA (miRNA) expression profiles of 9 OGCTs (2 malignant and 7 benign) and 3 SCSTs using small RNA sequencing. We observed significant miRNA expression variations among the three tumor groups. To further demonstrate the biological relevance of our findings, we selected 12 miRNAs for validation in an extended cohort of 16 OGCTs (9 benign and 7 malignant) and 7 SCSTs by reverse transcription-quantitative polymerase chain reaction. Higher expression of miR‑373‑3p, miR‑372‑3p and miR‑302c‑3p and lower expression of miR‑199a‑5p, miR‑214‑5p and miR‑202‑3p were reproducibly observed in malignant OGCTs as compared to benign OGCTs or SCSTs. Comparing with benign OGCTs, miR‑202c‑3p and miR‑513c‑5p were more abundant in SCSTs. Additionally, we examined Beclin 1 (BECN1), a target of miR‑199a‑5p, in the clinical samples using western blot analysis. Our results show that BECN1 expression was higher in malignant OGCTs than benign OGCTs, which is concordant with their lower miR‑199a‑5p expression. This study suggests that these miRNAs may have potential value as tumor markers and implications for further understanding the molecular basis of these tumor types.
Collapse
Affiliation(s)
- Roger K. Chang
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Xidan Li
- Department of Medicine, Karolinska Institutet, SE-141 86 Huddinge
| | - Ninni Mu
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Olga Hrydziuszko
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, SE-751 24 Uppsala, Sweden
| | - Beatriz Garcia-Majano
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| |
Collapse
|
33
|
Facchini G, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Iovane G, Grimaldi G, Piscitelli R, Muto P, Botti G, Perdonà S, Veneziani BM, Berretta M, Montanari M. Exploring the molecular aspects associated with testicular germ cell tumors: a review. Oncotarget 2017; 9:1365-1379. [PMID: 29416701 PMCID: PMC5787445 DOI: 10.18632/oncotarget.22373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. They constitute a distinct entity because of their embryonic origin and their unique biological behavior. Recent preclinical data regarding biological signaling machinery as well as genetic and epigenetic mechanisms associated with molecular patterns of tumors have contribute to explain the pathogenesis and the differentiation of TGCTs and to understand the mechanisms responsible for the development of resistance to treatment. In this review, we discuss the main genetic and epigenetic events associated with TGCTs development in order to better define their role in the pathogenesis of these tumors and in cisplatin-acquired resistance.
Collapse
Affiliation(s)
- Gaetano Facchini
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Carla Cavaliere
- Medical Oncology Unit, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Naples, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Giovanni Grimaldi
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Management, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
34
|
Yao B, Wang S, Xiao P, Wang Q, Hea Y, Zhang Y. MAPK signaling pathways in eye wounds: Multifunction and cooperation. Exp Cell Res 2017; 359:10-16. [DOI: 10.1016/j.yexcr.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
|
35
|
Piasecki BP, Sasani TA, Lessenger AT, Huth N, Farrell S. MAPK-15 is a ciliary protein required for PKD-2 localization and male mating behavior in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2017; 74:390-402. [PMID: 28745435 DOI: 10.1002/cm.21387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
Cilia are conserved cellular structures that facilitate sensory-based processes, including those required for neuronal and kidney functions. Here, we show that the human mitogen activated kinase-15 (MAPK-15) ortholog in Caenorhabditis elegans encodes a ciliary protein. A strain harboring a mutation in the catalytic site of the kinase domain results in ciliary-specific defects in tail neurons of both hermaphrodite and male worms, manifesting in dye uptake, dendrite extension, and male mating behavior defects. Transgenic-fusion constructs for two mapk-15 isoforms (A and C) with full-length kinase domains were generated. Expression of either the A- or C-specific isoform rescues the dye-filling and male-mating defective phenotypes, confirming the ciliary function of mapk-15. Expression of mapk-15 occurs in many ciliated-sensory neurons of the head and tail in hermaphrodite and male worms. Localization of MAPK-15 isoforms A and C occurs in the cell body, dendritic processes, and cilia. A C. elegans ortholog of polycystin-2, a protein that when defective in mammals results in autosomal dominant polycystic kidney disease, is mislocalized in the male ray neurons of mapk-15 mutant worms. Expression of the mapk-15 gene by the pkd-2 promoter partially rescues the male-mating defects observed in mapk-15 mutant animals. Expression of mapk-15 is DAF-19/RFX dependent in some CSNs and DAF-19/RFX independent in others. Collectively, these data suggest that MAPK-15 functions upstream of PKD-2 localization to modulate ciliary sensory functions.
Collapse
Affiliation(s)
| | - Thomas A Sasani
- Department of Biology, Lawrence University, Appleton, Wisconsin.,Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | | | - Nicholas Huth
- Department of Biology, Lawrence University, Appleton, Wisconsin
| | - Shane Farrell
- Department of Biology, Lawrence University, Appleton, Wisconsin
| |
Collapse
|
36
|
Nicolae CM, Moldovan GL. ERKing Trypanosoma: PCNA phosphorylation as novel target. Cell Cycle 2016; 15:3167-3168. [PMID: 27635479 DOI: 10.1080/15384101.2016.1232081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Claudia M Nicolae
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - George-Lucian Moldovan
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|