1
|
Ke J, Tian J, Mei S, Ying P, Yang N, Wang X, Zou D, Peng X, Yang Y, Zhu Y, Gong Y, Wang Z, Gong J, Zhong R, Chang J, Miao X. Genetic Predisposition to Colon and Rectal Adenocarcinoma Is Mediated by a Super-enhancer Polymorphism Coactivating CD9 and PLEKHG6. Cancer Epidemiol Biomarkers Prev 2020; 29:850-859. [PMID: 31988071 DOI: 10.1158/1055-9965.epi-19-1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified dozens of loci associated with colon and rectal adenocarcinoma risk. As tissue-specific super-enhancers (SE) play important roles in tumorigenesis, we systematically investigate SEs and inner variants in established GWAS loci to decipher the underlying biological mechanisms. METHODS Through a comprehensive bioinformatics analysis on multi-omics data, we screen potential single-nucleotide polymorphisms (SNP) in cancer-specific SEs, and then subject them to a two-stage case-control study containing 4,929 cases and 7,083 controls from the Chinese population. A series of functional assays, including reporter gene assays, electrophoretic mobility shift assays (EMSA), CRISPR-Cas9 genome editing, chromosome conformation capture (3C) assays, and cell proliferation experiments, are performed to characterize the variant's molecular consequence and target genes. RESULTS The SNP rs11064124 in 12p13.31 is found significantly associated with the risk of colon and rectal adenocarcinoma with an odds ratio (OR) of 0.87 [95% confidence interval (CI), 0.82-0.92, P = 8.67E-06]. The protective rs11064124-G weakens the binding affinity with vitamin D receptor (VDR) and increases the enhancer's activity and interactions with two target genes' promoters, thus coactivating the transcription of CD9 and PLEKHG6, which are both putative tumor suppressor genes for colon and rectal adenocarcinoma. CONCLUSIONS Our integrative study highlights an SE polymorphism rs11064124 and two susceptibility genes CD9 and PLEKHG6 in 12p13.31 for colon and rectal adenocarcinoma. IMPACT These findings suggest a novel insight for genetic pathogenesis of colon and rectal adenocarcinoma, involving transcriptional coactivation of diverse susceptibility genes via the SE element as a gene regulation hub.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Mei S, Ke J, Tian J, Ying P, Yang N, Wang X, Zou D, Peng X, Yang Y, Zhu Y, Gong Y, Zhong R, Chang J, Miao X. A functional variant in the boundary of a topological association domain is associated with pancreatic cancer risk. Mol Carcinog 2019; 58:1855-1862. [DOI: 10.1002/mc.23077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shufang Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Pingting Ying
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Nan Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoyang Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Danyi Zou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiating Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
3
|
Yin Z, Cui Z, Ren Y, Xia L, Li H, Zhou B. MiR-146a polymorphism correlates with lung cancer risk in Chinese nonsmoking females. Oncotarget 2018; 8:2275-2283. [PMID: 27911870 PMCID: PMC5356798 DOI: 10.18632/oncotarget.13722] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
This study provides evidence that the common rs2910164 polymorphism in miR-146a strongly correlates with lung cancer risk in nonsmoking females in northeast China. The genotypes of miR-146a rs2910164 were determined in 1131 patients with lung cancer and 1003 healthy control subjects. Tissue samples were used to evaluate the association between miRNA expression and lung cancer risk as well as the correlation between rs2910164 genotypes and miR-146a expression. The secondary structures of the wild-type and variant miR-146a sequences were predicted, and luciferase-based target assays were used to test whether miR-146a bound to tumor necrosis factor receptor associated factor 6 (TRAF6) mRNA. Individuals carrying heterozygous CG genotype of miR-146a rs2910164 had less risk of lung cancer than those carrying homozygous wild CC genotype (OR = 0.76, 95% CI = 0.60-0.98, P = 0.032). We found no significant association between miR-146a expression and lung cancer risk. MiR-146a expression differed in those carrying the CC genotype as compared with the CG or the GG genotype (P = 0.032 and 0.001), and the secondary structure of the C allele differed slightly from the G allele. Significantly lower levels of luciferase activity were observed when the TRAF6 3′UTR was cotransfected with miR-146a-3p carrying the rs2910164 C allele (P = 0.001). Thus, miR-146a rs2910164 polymorphism may influence susceptibility to lung cancer in Chinese nonsmoking females through targeting TRAF6.
Collapse
Affiliation(s)
- Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, PR China
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, PR China
| | - Lingzi Xia
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, PR China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, PR China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, PR China
| |
Collapse
|
4
|
Polymorphisms in CARS are associated with gastric cancer risk: a two-stage case-control study in the Chinese population. Gastric Cancer 2017; 20:940-947. [PMID: 28409418 DOI: 10.1007/s10120-017-0717-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The cysteinyl transfer RNA synthetase gene (CARS) is located on chromosome band 11p15.5, which is an important tumor-suppressor gene region. Mutations in CARS have been identified in many kinds of cancers; however, evidence for a relationship between genetic variants in CARS and gastric cancer at the population level is still lacking. Thus, we explored the association of variants in CARS with gastric cancer using a two-stage case-control strategy in Chinese. METHODS We undertook a two-stage case-control study to investigate the association between polymorphisms in CARS and risk of gastric cancer with use of an Illumina Infinium® BeadChip and an ABI 7900 system. RESULTS Four single nucleotide polymorphisms (SNPs) were significantly associated with gastric cancer risk in both the discovery stage and the validation stage after adjustment for age and sex. In addition, the combined results of the two stages showed these SNPs were related to gastric cancer risk (P false discovery rate ≤ 0.001 for rs384,490, rs729662, rs2071101, and rs7394702). In silico analyses revealed that rs384490 and rs7394702 could affect transcription factor response elements or DNA methylation of CARS, and rs729662 was associated with the prognosis of gastric cancer. Additionally, expression quantitative trait loci analysis showed rs384490 and rs729662 might alter expression of CARS-related genes. CONCLUSIONS The potential functional SNPs in CARS might influence the biological functions of CARS or CARS-related genes and ultimately modify the occurrence and development of gastric cancer in Chinese. Further large-scale population-based studies or biological functional assays are warranted to validate our findings.
Collapse
|
5
|
Reelin protects from colon pathology by maintaining the intestinal barrier integrity and repressing tumorigenic genes. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2126-2134. [PMID: 28572005 DOI: 10.1016/j.bbadis.2017.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
Abstract
We previously reported that reelin, an extracellular matrix protein first known for its key role in neuronal migration, reduces the susceptibility to dextran sulphate sodium (DSS)-colitis. The aim of the current study was to determine whether reelin protects from colorectal cancer and how reelin defends from colon pathology. In the colon of wild-type and of mice lacking reelin (reeler mice) we have analysed the: i) epithelium cell renewal processes, ii) morphology, iii) Sox9, Cdx2, Smad5, Cyclin D1, IL-6 and IFNγ mRNA abundance in DSS-treated and untreated mice, and iv) development of azoxymethane/DSS-induced colorectal cancer, using histological and real time-PCR methodologies. The reeler mutation increases colitis-associated tumorigenesis, with increased tumours number and size. It also impairs the intestinal barrier because it reduces cell proliferation, migration, differentiation and apoptosis; decreases the number and maturation of goblet cells, and expands the intercellular space of the desmosomes. The intestinal barrier impairment might explain the increased susceptibility to colon pathology exhibited by the reeler mice and is at least mediated by the down-regulation of Sox9 and Cdx2. In response to DSS-colitis, the reeler colon increases the mRNA abundance of IL-6, Smad5 and Cyclin D1 and decreases that of IFNγ, conditions that might result in the increased colitis-associated tumorigenesis found in the reeler mice. In conclusion, the results highlight a role for reelin in maintaining intestinal epithelial cell homeostasis and providing resistance against colon pathology.
Collapse
|
6
|
Feng W, Cui G, Tang CW, Zhang XL, Dai C, Xu YQ, Gong H, Xue T, Guo HH, Bao Y. Role of glucose metabolism related gene GLUT1 in the occurrence and prognosis of colorectal cancer. Oncotarget 2017; 8:56850-56857. [PMID: 28915636 PMCID: PMC5593607 DOI: 10.18632/oncotarget.18090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) ranks the third most commonly diagnosed cancer in males and the second in females worldwide. However, the functional and causal SNPs for CRC remain to be mined. Glucose transporter 1 (GLUT1), a pivotal rate-limiting element in the transport of glucose in malignancy cells, has been identified to be associated with many cancers. Here, we aim to explore the role of GLUT1 in the occurrence and prognosis of colorectal cancer in a Chinese population. We found that GLUT1 expression levels in CRC tumor tissues were significantly higher than those in the corresponding adjacent normal tissues, and Cox multivariate analysis demonstrated that the GLUT1 expression was an independent prognostic factor for CRC (HR = 2.11, 95% CI = 1.33–3.34, P=0.001). For a functional polymorphism of GLUT1 (rs710218), we found that individuals with TT genotype (OR = 1.68, 95% CI = 1.02-2.75, P = 0.041) or AT genotype (OR = 1.47, 95% CI = 1.09-1.99, P = 0.012) of rs710218 had a significantly increased risk of CRC compared to those with AA homozygote. These findings strongly suggest that glucose metabolism related gene GLUT1, and its functional SNP, rs710218 might contribute to CRC susceptibility and prognosis, and the exact biological mechanism awaits further research.
Collapse
Affiliation(s)
- Wenming Feng
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Ge Cui
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Cheng-Wu Tang
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Xiao-Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Chuang Dai
- Department of Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Yong-Qiang Xu
- Department of Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Hui Gong
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Tao Xue
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Hui-Hui Guo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, P.R. China
| |
Collapse
|
7
|
Ke J, Tian J, Li J, Gong Y, Yang Y, Zhu Y, Zhang Y, Zhong R, Chang J, Gong J. Identification of a functional polymorphism affecting microRNA binding in the susceptibility locus 1q25.3 for colorectal cancer. Mol Carcinog 2017; 56:2014-2021. [PMID: 28277607 DOI: 10.1002/mc.22649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/12/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Genome-wide association studies (GWASs) have identified dozens of susceptibility loci for colorectal cancer (CRC). However, most of them lack functional genetic variants and clear biological mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs involved in a variety of physiological and tumorigenic processes. Here we hypothesized that single nucleotide polymorphisms (SNPs) that affect miRNAs biogenesis and binding, could contribute to CRC risk in the Chinese population. To locate miRNA-related SNPs in established GWAS loci, we initially screened out five candidate SNPs using a systematic bioinformatics analysis. Then, we performed a two-stage case-control study consisting of 2347 cases and 3390 controls, and found a positive polymorphism rs1062044, which presented consistently significant associations with CRC in both stages, and with an odds ratio (OR) = 1.32 (95% confidence interval (95%CI) = 1.18-1.49, P = 3.43E-06) under the dominant model in the combined study. Further luciferase reporter gene assays indicated that the variant G allele obviously improved the specific binding between miR-423-5p and the gene LAMC1. These findings suggested that the functional SNP rs1062044 at 1q25.3 might be a genetic modifier for the occurrence and development of CRC.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Key Laboratory for Environment and Health (Ministry of Education), School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jing Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Xu C, Zhu J, Fu W, Liang Z, Song S, Zhao Y, Lyu L, Zhang A, He J, Duan P. MDM4 rs4245739 A > C polymorphism correlates with reduced overall cancer risk in a meta-analysis of 69477 subjects. Oncotarget 2016; 7:71718-71726. [PMID: 27687591 PMCID: PMC5342115 DOI: 10.18632/oncotarget.12326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Mouse double minute 4 (MDM4) is a p53-interacting oncoprotein that plays an important role in the p53 tumor suppressor pathway. The common rs4245739 A > C polymorphism creates a miR-191 binding site in the MDM4 gene transcript. Numerous studies have investigated the association between this MDM4 polymorphism and cancer risk, but have failed to reach a definitive conclusion. To address this issue, we conducted a meta-analysis by selecting eligible studies from MEDLINE, EMBASE, and Chinese Biomedical databases. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. We also performed genotype-based mRNA expression analysis using data from 270 individuals retrieved from public datasets. A total of 15 studies with 19796 cases and 49681 controls were included in the final meta-analysis. The pooled results revealed that the MDM4 rs4245739C allele is associated with a decreased cancer risk in the heterozygous (AC vs. AA: OR = 0.82, 95% CI = 0.73-0.93), dominant (AC/CC vs. AA: OR = 0.82, 95% CI = 0.72-0.93), and allele contrast models (C vs. A: OR = 0.84, 95% CI = 0.76-0.94). The association was more prominent in Asians and population-based studies. We also found that the rs4245739C allele was associated with decreased MDM4 mRNA expression, especially for Caucasians. Thus the MDM4 rs4245739 A > C polymorphism appears to be associated with decreased cancer risk. These findings would be strengthened by new studies with larger sample sizes and encompassing additional ethnicities.
Collapse
Affiliation(s)
- Chaoyi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zongwen Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shujie Song
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuan Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Lihua Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Anqi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
9
|
Hua RX, Zhu J, Jiang DH, Zhang SD, Zhang JB, Xue WQ, Li XZ, Zhang PF, He J, Jia WH. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes (Basel) 2016; 7:73. [PMID: 27669310 PMCID: PMC5083912 DOI: 10.3390/genes7100073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
Xeroderma pigmentosum group C (XPC) is a key component of the nucleotide excision repair (NER) pathway. Dysfunctional XPC protein may impair NER-mediated DNA repair capacity and further lead to genomic instability and carcinogenesis. Two common nonsynonymous polymorphisms in the XPC gene, Lys939Gln (rs2228001 A > C) and Ala499Val (rs2228000 C > T), have been investigated in various types of cancer. We genotyped these two polymorphisms in 1141 cases with histologically confirmed colorectal cancer (CRC) and 1173 healthy controls to explore their causative association with CRC susceptibility. Overall, no association was observed between these two variants and the risk of CRC. Our meta-analysis also confirmed a lack of overall association. Stratified analyses were performed by age, gender, smoking status, pack-year, drinking status, tumor sites, and Duke's stages. We found that XPC Lys939Gln polymorphism was significantly associated with an increased CRC risk in subjects at 57 years of age or younger (adjusted odds ratio (OR) = 1.37, 95% confidence interval (CI) = 1.004-1.86, p = 0.047) and non-drinkers (adjusted OR = 1.53, 95% CI = 1.10-2.12, p = 0.011). Our results indicated that XPC Lys939Gln may be a low-penetrance CRC susceptibility polymorphism. Our findings warrant further validation.
Collapse
Affiliation(s)
- Rui-Xi Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China.
| | - Dan-Hua Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Shao-Dan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Jiang-Bo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Wen-Qiong Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Xi-Zhao Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Pei-Fen Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Jing He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Wei-Hua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
10
|
Liu C, Zhong R, Lou J, Pan A, Tang Y, Chang J, Ke J, Li J, Yuan J, Wang Y, Chen W, Guo H, Wei S, Liang Y, Zhang X, He M, Hu FB, Wu T, Yao P, Miao X. Nighttime sleep duration and risk of nonalcoholic fatty liver disease: the Dongfeng-Tongji prospective study. Ann Med 2016; 48:468-476. [PMID: 27327959 DOI: 10.1080/07853890.2016.1193787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND To examine the association between self-reported nighttime sleep duration and nonalcoholic fatty liver disease (NAFLD) risk by comparing the incidence rates of NAFLD among healthy subjects with different sleep duration during the 5 years follow-up. METHODS 8965 eligible NAFLD-free subjects with a mean age of 61.6 years (males, 43.4%) from Dongfeng-Tongji cohort study at baseline were enrolled in the study. Logistic regression analysis was used to estimate the association between sleep duration and incident NAFLD with potential confounders adjusted. Sleep duration was categorized into five groups: <6 h, 6-7 h, 7-8 h, 8-9 h, ≥9 h. RESULT During the 5-years of follow-up, a total of 2,197 participants were newly diagnosed as NAFLD. Compared with those reported 7-8 h per day of nighttime sleep, the multivariable-adjusted odds ratio (95% confidence intervals) were 1.21 (1.07-1.38) for those who sleep 8-9 h/day, and 1.31 (1.13-1.52) for those who sleep over 9 h/day. However, no significant association was found with short nightly sleep duration (<7 h/day). CONCLUSION Long nighttime sleep duration was associated with a modestly increased risk of NAFLD in a middle-aged and elderly Chinese population. Key messages Long nighttime sleep duration was associated with a modestly increased risk of NAFLD in a middle-aged and elderly Chinese population. The effect of long nighttime sleep on the risk of incident NAFLD was attenuated greatly by body mass index (BMI) in men.
Collapse
Affiliation(s)
- Cheng Liu
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Rong Zhong
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jiao Lou
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - An Pan
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Yuhan Tang
- b Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jiang Chang
- c The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Juntao Ke
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jiaoyuan Li
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jing Yuan
- d Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Youjie Wang
- c The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Weihong Chen
- d Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Huan Guo
- d Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Sheng Wei
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Yuan Liang
- c The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Xiaomin Zhang
- d Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Meian He
- d Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Frank B Hu
- e Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health , Boston , USA
| | - Tangchun Wu
- d Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Ping Yao
- b Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Xiaoping Miao
- a Department of Epidemiology and Statistics, and the Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
11
|
Hua RX, Zhuo ZJ, Zhu J, Zhang SD, Xue WQ, Zhang JB, Xu HM, Li XZ, Zhang PF, He J, Jia WH. XPG Gene Polymorphisms Contribute to Colorectal Cancer Susceptibility: A Two-Stage Case-Control Study. J Cancer 2016; 7:1731-1739. [PMID: 27698911 PMCID: PMC5039395 DOI: 10.7150/jca.15602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/09/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported that xeroderma pigmentosum group G (XPG) gene polymorphisms may modulate colorectal cancer (CRC) susceptibility. In this study, we performed a two-stage case-control study to comprehensively investigate the associations of five polymorphisms in the XPG gene with CRC risk in 1,901 cases and 1,976 controls from Southern China, including rs2094258 C>T, rs751402 C>T, rs2296147 T>C, rs1047768 T>C and rs873601 G>A. After combining data from two stages, we found that three of the studied polymorphisms (rs2094258 C>T, rs751402 C>T, and rs873601 G>A) were significantly associated with CRC susceptibility. After adjustment for age and gender, multivariate logistic regression analysis indicated that carriers of the rs2094258 T alleles had an increased CRC risk [CT vs. CC: adjusted odds ratio (OR)=1.17, 95% confidence interval (CI)=1.01-1.36; TT vs. CC: adjusted OR=1.49, 95% CI=1.18-1.89; TT vs. CT/CC: adjusted OR=1.38, 95% CI=1.10-1.72]. Likely, rs873601 A allele also conferred increased CRC susceptibility. In contrast, a protective association was identified between rs751402 C>T polymorphism and the risk of CRC. In summary, our results indicated that these three polymorphisms were found to associate with CRC susceptibility in a Southern Chinese population.
Collapse
Affiliation(s)
- Rui-Xi Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhen-Jian Zhuo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Shao-Dan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Wen-Qiong Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Jiang-Bo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Hong-Mei Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Guangzhou 510120, Guangdong, China
| | - Xi-Zhao Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Pei-Fen Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Jing He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei-Hua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| |
Collapse
|