1
|
Topçu BT, Bozdağ Pehlivan S, Akdağ Y, Mut M, Öner L. Antibody Conjugated Nano-Enabled Drug Delivery Systems Against Brain Tumors. J Pharm Sci 2024; 113:1455-1469. [PMID: 38555997 DOI: 10.1016/j.xphs.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
The use of antibody-conjugated nanoparticles for brain tumor treatment has gained significant attention in recent years. Nanoparticles functionalized with anti-transferrin receptor antibodies have shown promising results in facilitating nanoparticle uptake by endothelial cells of brain capillaries and post-capillary venules. This approach offers a potential alternative to the direct conjugation of biologics to antibodies. Furthermore, studies have demonstrated the potential of antibody-conjugated nanoparticles in targeting brain tumors, as evidenced by the specific binding of these nanoparticles to brain cancer cells. Additionally, the development of targeted nanoparticles designed to transcytoses the blood-brain barrier (BBB) to deliver small molecule drugs and therapeutic antibodies to brain metastases holds promise for brain tumor treatment. While the use of nanoparticles as a delivery method for brain cancer treatment has faced challenges, including the successful delivery of nanoparticles to malignant brain tumors due to the presence of the BBB and infiltrating cancer cells in the normal brain, recent advancements in nanoparticle-mediated drug delivery systems have shown potential for enhancing the efficacy of brain cancer therapy. Moreover, the development of brain-penetrating nanoparticles capable of distributing over clinically relevant volumes when administered via convection-enhanced delivery presents a promising strategy for improving drug delivery to brain tumors. In conclusion, the use of antibody-conjugated nanoparticles for brain tumor treatment shows great promise in overcoming the challenges associated with drug delivery to the brain. By leveraging the specific targeting capabilities of these nanoparticles, researchers are making significant strides in developing effective and targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Beril Taş Topçu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey.
| | - Yagmur Akdağ
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey
| | - Melike Mut
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22903, USA
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey
| |
Collapse
|
2
|
Lan G, Song Q, Luan Y, Cheng Y. Targeted strategies to deliver boron agents across the blood-brain barrier for neutron capture therapy of brain tumors. Int J Pharm 2024; 650:123747. [PMID: 38151104 DOI: 10.1016/j.ijpharm.2023.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Boron neutron capture therapy (BNCT), as an innovative radiotherapy technology, has demonstrated remarkable outcomes when compared to conventional treatments in the management of recurrent and refractory brain tumors. However, in BNCT of brain tumors, the blood-brain barrier is a main stumbling block for restricting the transport of boron drugs to brain tumors, while the tumor targeting and retention of boron drugs also affect the BNCT effect. This review focuses on the recent development of strategies for delivering boron drugs crossing the blood-brain barrier and targeting brain tumors, providing new insights for the development of efficient boron drugs for the treatment of brain tumors.
Collapse
Affiliation(s)
- Gongde Lan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qingxu Song
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Coghi P, Li J, Hosmane NS, Zhu Y. Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med Res Rev 2023; 43:1809-1830. [PMID: 37102375 DOI: 10.1002/med.21964] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Boron neutron capture therapy (BNCT) is one of the most promising treatments among neutron capture therapies due to its long-term clinical application and unequivocally obtained success during clinical trials. Boron drug and neutron play an equivalent crucial role in BNCT. Nevertheless, current clinically used l-boronophenylalanine (BPA) and sodium borocaptate (BSH) suffer from large uptake dose and low blood to tumor selectivity, and that initiated overwhelm screening of next generation of BNCT agents. Various boron agents, such as small molecules and macro/nano-vehicles, have been explored with better success. In this featured article, different types of agents are rationally analyzed and compared, and the feasible targets are shared to present a perspective view for the future of BNCT in cancer treatment. This review aims at summarizing the current knowledge of a variety of boron compounds, reported recently, for the application of BCNT.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jinxin Li
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | |
Collapse
|
4
|
Zhang Z, Chong Y, Liu Y, Pan J, Huang C, Sun Q, Liu Z, Zhu X, Shao Y, Jin C, Liu T. A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China. Cancers (Basel) 2023; 15:4060. [PMID: 37627088 PMCID: PMC10452212 DOI: 10.3390/cancers15164060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer treatment modality that combines targeted boron agents and neutron irradiation to selectively destroy tumor cells. In mainland China, the clinical implementation of BNCT has made certain progress, primarily driven by the development of compact neutron source devices. The availability, ease of operation, and cost-effectiveness offered by these compact neutron sources make BNCT more accessible to cancer treatment centers. Two compact neutron sources, one being miniature reactor-based (IHNI-1) and the other one being accelerator-based (NeuPex), have entered the clinical research phase and are planned for medical device registration. Moreover, several accelerator-based neutron source devices employing different technical routes are currently under construction, further expanding the options for BNCT implementation. In addition, the development of compact neutron sources serves as an experimental platform for advancing the development of new boron agents. Several research teams are actively involved in the development of boron agents. Various types of third-generation boron agents have been tested and studied in vitro and in vivo. Compared to other radiotherapy therapies, BNCT in mainland China still faces specific challenges due to its limited clinical trial data and its technical support in a wide range of professional fields. To facilitate the widespread adoption of BNCT, it is crucial to establish relevant technical standards for neutron devices, boron agents, and treatment protocols.
Collapse
Affiliation(s)
- Zizhu Zhang
- Beijing Nuclear Industry Hospital, Beijing 102413, China
- Beijing Capture Tech Co., Ltd., Beijing 102413, China
| | - Yizheng Chong
- Innovation Business Center, China National Nuclear Corporation Overseas Ltd., Beijing 100044, China
| | - Yuanhao Liu
- Neuboron Therapy System Ltd., Nanjing 211100, China
- BNCT Center, Xiamen Humanity Hospital, Xiamen 361016, China
| | - Jianji Pan
- BNCT Center, Xiamen Humanity Hospital, Xiamen 361016, China
| | - Cheng Huang
- BNCT Center, Xiamen Humanity Hospital, Xiamen 361016, China
| | - Qi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiayang Zhu
- Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Yujun Shao
- Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Congjun Jin
- Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd., Beijing 102413, China
| |
Collapse
|
5
|
Anwar F, Al-Abbasi FA, Naqvi S, Sheikh RA, Alhayyani S, Asseri AH, Asar TO, Kumar V. Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma. Int J Nanomedicine 2023; 18:2737-2756. [PMID: 37250469 PMCID: PMC10211371 DOI: 10.2147/ijn.s405454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India
| |
Collapse
|
6
|
Seneviratne DS, Saifi O, Mackeyev Y, Malouff T, Krishnan S. Next-Generation Boron Drugs and Rational Translational Studies Driving the Revival of BNCT. Cells 2023; 12:1398. [PMID: 37408232 DOI: 10.3390/cells12101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
BNCT is a high-linear-energy transfer therapy that facilitates tumor-directed radiation delivery while largely sparing adjacent normal tissues through the biological targeting of boron compounds to tumor cells. Tumor-specific accumulation of boron with limited accretion in normal cells is the crux of successful BNCT delivery. Given this, developing novel boronated compounds with high selectivity, ease of delivery, and large boron payloads remains an area of active investigation. Furthermore, there is growing interest in exploring the immunogenic potential of BNCT. In this review, we discuss the basic radiobiological and physical aspects of BNCT, traditional and next-generation boron compounds, as well as translational studies exploring the clinical applicability of BNCT. Additionally, we delve into the immunomodulatory potential of BNCT in the era of novel boron agents and examine innovative avenues for exploiting the immunogenicity of BNCT to improve outcomes in difficult-to-treat malignancies.
Collapse
Affiliation(s)
| | - Omran Saifi
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yuri Mackeyev
- Department of Neurosurgery, UTHealth, Houston, TX 77030, USA
| | - Timothy Malouff
- Department of Radiation Oncology, University of Oklahoma, Oklahoma City, OK 73019, USA
| | - Sunil Krishnan
- Department of Neurosurgery, UTHealth, Houston, TX 77030, USA
| |
Collapse
|
7
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
9
|
Gazaille C, Sicot M, Saulnier P, Eyer J, Bastiat G. Local Delivery and Glioblastoma: Why Not Combining Sustained Release and Targeting? FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:791596. [PMID: 35047971 PMCID: PMC8757870 DOI: 10.3389/fmedt.2021.791596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors and is associated with a very low overall median survival despite the current treatment. The standard of care used in clinic is the Stupp's protocol which consists of a maximal resection of the tumor when possible, followed by radio and chemotherapy using temozolomide. However, in most cases, glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot of hurdles to overcome in the development of new therapeutic strategies such as tumor heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and few treatments are on the market today. One of them is particularly appealing because it is a local therapy, which does not bring additional invasiveness since tumor resection is included in the gold standard treatment. They are implants: the Gliadel® wafers, which are deposited post-surgery. Nevertheless, in addition to presenting important undesirable effects, it does not bring any major benefit in the therapy despite the strategy being particularly attractive. The purpose of this review is to provide an overview of recent advances in the development of innovative therapeutic strategies for glioblastoma using an implant-type approach. The combination of this local strategy with effective targeting of the tumor microenvironment as a whole, also developed in this review, may be of interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | |
Collapse
|
10
|
Abstract
This review describes the latest polymeric systems used as boron transporters for boron neutron capture therapy.
Collapse
Affiliation(s)
- Anaïs Pitto-Barry
- School of Chemistry and Biosciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
11
|
Bozzato E, Bastiancich C, Préat V. Nanomedicine: A Useful Tool against Glioma Stem Cells. Cancers (Basel) 2020; 13:cancers13010009. [PMID: 33375034 PMCID: PMC7792799 DOI: 10.3390/cancers13010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
The standard of care therapy of glioblastoma (GBM) includes invasive surgical resection, followed by radiotherapy and concomitant chemotherapy. However, this therapy has limited success, and the prognosis for GBM patients is very poor. Although many factors may contribute to the failure of current treatments, one of the main causes of GBM recurrences are glioma stem cells (GSCs). This review focuses on nanomedicine strategies that have been developed to eliminate GSCs and the benefits that they have brought to the fight against cancer. The first section describes the characteristics of GSCs and the chemotherapeutic strategies that have been used to selectively kill them. The second section outlines the nano-based delivery systems that have been developed to act against GSCs by dividing them into nontargeted and targeted nanocarriers. We also highlight the advantages of nanomedicine compared to conventional chemotherapy and examine the different targeting strategies that have been employed. The results achieved thus far are encouraging for the pursuit of effective strategies for the eradication of GSCs.
Collapse
Affiliation(s)
- Elia Bozzato
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Chiara Bastiancich
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
12
|
Yoshida F, Kurita T, Endo K, Nakai K, Shirakawa M, Zaboronok A, Tsurubuchi T, Ishikawa E, Matsumura A. Difference in BPA uptake between glioma stem-like cells and their cancerous cells. Appl Radiat Isot 2020; 164:109234. [PMID: 32554123 DOI: 10.1016/j.apradiso.2020.109234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/22/2020] [Accepted: 05/16/2020] [Indexed: 01/13/2023]
Abstract
Tumor sphere-forming (TS) glioma stem cells and cancerous TS cells were analyzed in vivo and in vitro. The boron concentration in murine TS tumors was higher than normal tissue. The boron concentration at 24 h was 0.80 ± 0.09 μg/107 in the TS cells, and 1.08 ± 0.08 μg/107 in the cancerous cells. The LAT-1 amino-acid transporter positive rate was 35.4% in the TS cells and 100% in the cancerous cells. These results suggested the relation between LAT-1 expression and boronophenylalanine concentration in vitro.
Collapse
Affiliation(s)
- Fumiyo Yoshida
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Tadashi Kurita
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Keita Endo
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kei Nakai
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki, 300-0331, Japan.
| | - Makoto Shirakawa
- Department of Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
13
|
Zavjalov E, Zaboronok A, Kanygin V, Kasatova A, Kichigin A, Mukhamadiyarov R, Razumov I, Sycheva T, Mathis BJ, Maezono SEB, Matsumura A, Taskaev S. Accelerator-based boron neutron capture therapy for malignant glioma: a pilot neutron irradiation study using boron phenylalanine, sodium borocaptate and liposomal borocaptate with a heterotopic U87 glioblastoma model in SCID mice. Int J Radiat Biol 2020; 96:868-878. [PMID: 32339057 DOI: 10.1080/09553002.2020.1761039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: To evaluate the efficacy of boron neutron capture therapy (BNCT) for a heterotopic U87 glioblastoma model in SCID mice using boron phenylalanine (BPA), sodium borocaptate (BSH) and liposomal BSH as boron compounds at a unique, accelerator-based neutron source.Materials and methods: Glioblastoma models were obtained by subcutaneous implantation of U87 cells in the right thighs of SCID mice before administration of 350 mg/kg of BPA (BPA-group), 100 mg/kg of BSH (BSH-group) or 100 mg/kg of BSH in PEGylated liposomes (liposomal BSH-group) into the retroorbital sinus. Liposomes were prepared by reverse-phase evaporation. Neutron irradiation was carried out at a proton accelerator with a lithium target developed for BNCT at the Budker Institute of Nuclear Physics, Novosibirsk, Russian Federation. A proton beam current integral of 3 mA/h and energy of 2.05 MeV were used for neutron generation.Results: Boron compound accumulation in tumor tissues at the beginning of irradiation was higher in the BPA group, followed by the Liposomal BSH and BSH groups. Tumor growth was significantly slower in all irradiated mice from the 7th day after BNCT compared to untreated controls (p < .05). Tumor growth in all treated groups showed no large variation, apart from the Irradiation only group and the BPA group on the 7th day after BNCT. The overall trend of tumor growth was clear and the differences between treatment groups became significant from the 50th day after BNCT. Tumor growth was significantly slower in the Liposomal BSH group compared to the Irradiation only group on the 50th (p = .012), 53rd (p = .005), and the 57th (p = .021) days after treatment. Tumor growth in the Liposomal BSH group was significantly different from that in the BPA group on the 53rd day after BNCT (p = .021) and in the BSH group on the 50th (p = .024), 53rd (p = .015), and 57th (p = .038) days after BNCT. Skin reactions in the form of erosions and ulcers in the tumor area developed in treated as well as untreated animals with further formation of fistulas and necrotic decay cavities in most irradiated mice.Conclusions: We observed a tendency of BNCT at the accelerator-based neutron source to reduce or suspend the growth of human glioblastoma in immunodeficient animals. Liposomal BSH showed better long-term results compared to BPA and non-liposomal BSH. Further modifications in liposomal boron delivery are being studied to improve treatment outcomes.
Collapse
Affiliation(s)
- Evgenii Zavjalov
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Alexander Zaboronok
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Vladimir Kanygin
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia
| | - Anna Kasatova
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Aleksandr Kichigin
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia
| | - Rinat Mukhamadiyarov
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Research Institute for Complex Issues of Cardiovascular Diseases SB RAS, Kemerovo, Russia
| | - Ivan Razumov
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Bryan J Mathis
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sakura Eri B Maezono
- PhD Program in Human Biology, School of Integrative and Global Majors and International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia.,Laboratory of BNCT, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
14
|
Yinghuai Z, Lin X, Xie H, Li J, Hosmane NS, Zhang Y. The Current Status and Perspectives of Delivery Strategy for Boron-based Drugs. Curr Med Chem 2018; 26:5019-5035. [PMID: 30182851 DOI: 10.2174/0929867325666180904105212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
Boron-containing compounds are essential micronutrients for animals and plants despite their low-level natural occurrence. They can strengthen the cell walls of the plants and they play important role in supporting bone health. However, surprisingly, boron-containing compounds are seldom found in pharmaceutical drugs. In fact, there are no inherent disadvantages reported so far in terms of the incorporation of boron into medicines. Indeed, drugs based on boron-containing compounds, such as tavaborole (marked name Kerydin) and bortezomib (trade name Velcade) have been investigated and they are used in clinical treatment. In addition, following the advanced development of boron neutron capture therapy and a new emerging proton boron fusion therapy, more boron-containing medicinals are to be expected. This review discusses the current status and perspectives of delivery strategy for boron-containing drugs.
Collapse
Affiliation(s)
- Zhu Yinghuai
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau. Macao
| | - Xinglong Lin
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Hongming Xie
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Jianlin Li
- HEC Research and Development Center, Dongguan 523871. China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115-2862. United States
| | - Yingjun Zhang
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| |
Collapse
|
15
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
16
|
Ghaffari H, Beik J, Talebi A, Mahdavi SR, Abdollahi H. New physical approaches to treat cancer stem cells: a review. Clin Transl Oncol 2018; 20:1502-1521. [PMID: 29869042 DOI: 10.1007/s12094-018-1896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) have been identified as the main center of tumor therapeutic resistance. They are highly resistant against current cancer therapy approaches particularly radiation therapy (RT). Recently, a wide spectrum of physical methods has been proposed to treat CSCs, including high energetic particles, hyperthermia (HT), nanoparticles (NPs) and combination of these approaches. In this review article, the importance and benefits of the physical CSCs therapy methods such as nanomaterial-based heat treatments and particle therapy will be highlighted.
Collapse
Affiliation(s)
- H Ghaffari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - J Beik
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - A Talebi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - S R Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
- Department of Medical Physics and Radiation Biology Research Center, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| | - H Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| |
Collapse
|
17
|
Oleshkevich E, Teixidor F, Rosell A, Viñas C. Merging Icosahedral Boron Clusters and Magnetic Nanoparticles: Aiming toward Multifunctional Nanohybrid Materials. Inorg Chem 2017; 57:462-470. [DOI: 10.1021/acs.inorgchem.7b02691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Elena Oleshkevich
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Anna Rosell
- Neurovascular Research
Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
18
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
19
|
Gianpiero C, Anis D, Aikaterini R, Eirini T, Ioannis VS, Dimitrios FG, John T. Boron-containing delocalised lipophilic cations for the selective targeting of cancer cells. MEDCHEMCOMM 2017; 8:67-72. [PMID: 30108691 PMCID: PMC6072302 DOI: 10.1039/c6md00383d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022]
Abstract
To limit the incidence of relapse, cancer treatments must not promote the emergence of drug resistance in tumour and cancer stem cells. Under the proviso that a therapeutic amount of boron is selectively delivered to cancer cells, Boron Neutron Capture Therapy (BNCT) may represent one approach that meets this requirement. To this end, we report the synthesis and pharmacology of several chemical entities, based on boron-rich carborane moieties that are functionalised with Delocalized Lipophilic Cations (DLCs), which selectively target the mitochondria of tumour cells. The treatment of tumour and cancer stem cells (CSCs) with such DLC-functionalized carboranes (DLC-carboranes) induces cell growth arrest that is both highly cancer-cell-selective and permanent. Experiments involving cultures of normal and cancer cells show that only normal cells exhibit recapitulation of their proliferation potential upon removal of the DLC-carborane treatment. At the molecular level, the pharmacological effect of DLC-carboranes is exerted through activation of the p53/p21 axis.
Collapse
Affiliation(s)
- Calabrese Gianpiero
- School of Life Science, Pharmacy and Chemistry , Kingston University London , Penrhyn Road , Kingston-upon-Thames , Surrey KT1 2EE , UK .
| | - Daou Anis
- School of Life Science, Pharmacy and Chemistry , Kingston University London , Penrhyn Road , Kingston-upon-Thames , Surrey KT1 2EE , UK .
| | - Rova Aikaterini
- Department of Pharmacology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Tseligka Eirini
- Department of Pharmacology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Vizirianakis S Ioannis
- Department of Pharmacology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Fatouros G Dimitrios
- Department of Pharmaceutical Technology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Tsibouklis John
- School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , PO1 2DT , UK
| |
Collapse
|