1
|
Aubdool AA, Moyes AJ, Pérez-Ternero C, Baliga RS, Sanghera J, Syed MT, Jaigirdah K, Panesar AK, Tsui JC, Li Y, Vasquez HG, Shen YH, LeMaire SA, Raffort-Lareyre J, Mallat Z, Lu HS, Daugherty A, Hobbs AJ. Endothelium- and Fibroblast-Derived C-Type Natriuretic Peptide Prevents the Development and Progression of Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2025. [PMID: 40177775 DOI: 10.1161/atvbaha.124.322350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Thoracic aortic aneurysm (AA) and abdominal AA are life-threatening diseases characterized by dilation, inflammation, and structural weakness; development of pharmacological therapies is desperately needed. CNP (C-type natriuretic peptide) plays a key role in vascular homeostasis, mediating vasodilator, anti-inflammatory, and antiatherogenic actions. Because such processes drive AA, we determined the role of endogenous CNP in offsetting pathogenesis. METHODS Tissue from patients with AA was analyzed to determine the consequences on CNP signaling. Ascending and suprarenal aortic diameters were assessed at baseline and following Ang II (angiotensin II; 1.44 mg/kg per day) infusion in wild-type, endothelium-restricted (ecCNP-/-), fibroblast-restricted (fbCNP-/-), global CNP (gbCNP-/-), or global NPR-C-/- mice infected with an adeno-associated virus expressing a proprotein convertase subtilisin/kexin type 9 gain-of-function mutation or backcrossed to an apoE-/- background. At 28 days, aortas were harvested for RT-qPCR and histological analyses. CNP (0.2 mg/kg per day) was infused to rescue any adverse phenotype. RESULTS Aneurysmal tissue from patients with thoracic AA and abdominal AA revealed that CNP and NPR-C (natriuretic peptide receptor-C) expression were overtly perturbed. ecCNP-/-, fbCNP-/-, and gbCNP-/- mice exhibited an aggravated phenotype compared with wild-type mice in both ascending and suprarenal aortas, exemplified by greater dilation, fibrosis, elastin degradation, and macrophage infiltration. CNP and NPR-C expression was also dysregulated in murine thoracic AA and abdominal AA, accompanied by increased accumulation of mRNA encoding markers of inflammation, extracellular matrix remodeling/calcification, fibrosis, and apoptosis. CNP also prevented activation of isolated macrophages and vascular smooth muscle cells. An essentially identical phenotype was observed in NPR-C-/- mice and while administration of CNP protected against disease severity in wild-type animals, this phenotypic rescue was not apparent in NPR-C-/- mice. CONCLUSIONS Endothelium- and fibroblast-derived CNP, via NPR-C activation, plays important roles in attenuating AA formation by preserving aortic structure and function. Therapeutic strategies aimed at mimicking CNP bioactivity hold potential to reduce the need for surgical intervention.
Collapse
Affiliation(s)
- Aisah A Aubdool
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - Cristina Pérez-Ternero
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - Reshma S Baliga
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - Jasspinder Sanghera
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - M Taaha Syed
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - Kareemah Jaigirdah
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - Anmolpreet K Panesar
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| | - Janice C Tsui
- Division of Surgery and Interventional Science, University College London and Royal Free London NHS Foundation Trust, United Kingdom (J.C.T.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.L., H.G.V., Y.H.S., S.A.L.)
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.L., H.G.V., Y.H.S., S.A.L.)
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.L., H.G.V., Y.H.S., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.L., H.G.V., Y.H.S., S.A.L.)
- Geisinger Research Institute and Heart & Vascular Institute (S.A.L.)
| | | | - Ziad Mallat
- Division of Cardiovascular Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (Z.M.)
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, Saha Aortic Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, Saha Aortic Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London Hospitals, Queen Mary University of London, United Kingdom (A.A.A., A.J.M., C.P.-T., R.S.B., J.S., M.T.S., K.J., A.K.P., A.J.H.)
| |
Collapse
|
2
|
Ranjan R, Hasan MK, Adhikary AB. Bangladeshi Atherosclerosis Biobank and Hub: The BANGABANDHU Study. Int J Gen Med 2024; 17:2507-2512. [PMID: 38826511 PMCID: PMC11144007 DOI: 10.2147/ijgm.s466706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024] Open
Abstract
Background Genetic factors contribute significantly to the risk of ischaemic heart disease (IHD), which is the leading cause of mortality in Bangladesh. The BANGABANDHU (Bangladeshi Atherosclerosis Biobank AND Hub) study will allow a hypothesis-free genome-wide association study (GWAS) to identify genetic risk factors associated with ischaemic heart disease patients undergoing coronary artery bypass graft (CABG) surgery in Bangladesh. Methods This is a multi-centre population-based case-control study aimed to evaluate 1500 (Fifteen Hundred) adult (≥18 years of age) people divided into 2 study groups: Case/Proband (750 IHD patients undergoing CABG surgery) and Control (750 healthy people). Spouses or family members are preferred as healthy control subjects due to their shared geographic location and similar environmental exposure. Results This will be the first largest DNA repository of CABG patients in Bangladesh, and identifying novel gene loci among CABG patients might help to discover novel therapeutic targets for Bangladeshi IHD patients. Further, identifying and comparing novel gene loci among CABG patients with other ancestry might help devise national guidelines for treating coronary artery disease. Conclusion Promising current study results will encourage Bangladeshi researchers and pharmaceutical companies to conduct further studies into the genetic basis of Bangladeshi complex coronary artery disease, which might identify novel genes for therapeutic targets for Bangladeshi patients and strengthen the healthcare standards in Bangladesh.
Collapse
Affiliation(s)
- Redoy Ranjan
- Department of Cardiac Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Kamrul Hasan
- Department of Cardiac Surgery, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh
| | - Asit Baran Adhikary
- Department of Cardiac Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
- Department of Cardiac Surgery, Impulse Hospital & Research Centre, Dhaka, Bangladesh
| |
Collapse
|
3
|
Silva S, Nitsch D, Fatumo S. Genome-wide association studies on coronary artery disease: A systematic review and implications for populations of different ancestries. PLoS One 2023; 18:e0294341. [PMID: 38019802 PMCID: PMC10686512 DOI: 10.1371/journal.pone.0294341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Cardiovascular diseases are some of the leading causes of death worldwide, with coronary artery disease leading as one of the primary causes of mortality in both the developing and developed worlds. Despite its prevalence, there is a disproportionately small number of studies conducted in populations of non-European ancestry, with the limited sample sizes of such studies further restricting the power and generalizability of respective findings. This research aimed at understanding the differences in the genetic architecture of coronary artery disease (CAD) in populations of diverse ancestries in order to contribute towards the understanding of the pathophysiology of coronary artery disease. METHODS We performed a systematic review on the 6th of October, 2022 summarizing genome-wide association studies on coronary artery disease, while employing the GWAS Catalog as an independent database to support the search. We developed a framework to assess the methodological quality of each study. We extracted and grouped associated single nucleotide polymorphisms and genes according to ancestry groups of participants. RESULTS We identified 3100 studies, of which, 36 relevant studies were included in this research. Three of the studies that were included were not listed in the GWAS Catalog, highlighting the value of conducting an independent search alongside established databases in order to ensure the full research landscape has been captured. 743,919 CAD case participants from 25 different countries were analysed, with 61% of the studies identified in this research conducted in populations of European ancestry. No studies investigated populations of Africans living in continental Africa or admixed American ancestry groups besides African-Americans, while limited sample sizes were included of population groups besides Europeans and East Asians. This observed disproportionate population representation highlights the gaps in the literature, which limits our ability to understand coronary artery disease as a global disease. 71 genetic loci were identified to be associated with coronary artery disease in more than one article, with ancestry-specific genetic loci identified in each respective population group which were not detected in studies of other ancestries. CONCLUSIONS Although the replication and validation of these variants are still warranted, these finding are indicative of the value of including diverse ancestry populations in GWAS reference panels, as a more comprehensive understanding of the genetic architecture and pathophysiology of CAD can be achieved.
Collapse
Affiliation(s)
- Sarah Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Dorothea Nitsch
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| |
Collapse
|
4
|
Cheng C, Zhang J, Li X, Xue F, Cao L, Meng L, Sui W, Zhang M, Zhao Y, Xi B, Yu X, Xu F, Yang J, Zhang Y, Zhang C. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice. Signal Transduct Target Ther 2023; 8:290. [PMID: 37553374 PMCID: PMC10409771 DOI: 10.1038/s41392-023-01560-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Previous studies suggested a beneficial effect of natriuretic peptides in animal models of cardiovascular disease, but the role of natriuretic peptide receptor C (NPRC) in the pathogenesis of atherosclerosis (AS) remains unknown. This study was designed to test the hypothesis that NPRC may promote AS lesion formation and instability by enhancing oxidative stress, inflammation, and apoptosis via protein kinase A (PKA) signaling. ApoE-/- mice were fed chow or Western diet for 12 weeks and NPRC expression was significantly increased in the aortic tissues of Western diet-fed mice. Systemic NPRC knockout mice were crossed with ApoE-/- mice to generate ApoE-/-NPRC-/- mice, and NPRC deletion resulted in a significant decrease in the size and instability of aortic atherosclerotic lesions in ApoE-/-NPRC-/- versus ApoE-/- mice. In addition, endothelial cell-specific NPRC knockout attenuated atherosclerotic lesions in mice. In contrast, endothelial cell overexpression of NPRC aggravated the size and instability of atherosclerotic aortic lesions in mice. Experiments in vitro showed that NPRC knockdown in human aortic endothelial cells (HAECs) inhibited ROS production, pro-inflammatory cytokine expression and endothelial cell apoptosis, and increased eNOS expression. Furthermore, NPRC knockdown in HAECs suppressed macrophage migration, cytokine expression, and phagocytosis via its effects on endothelial cells. On the contrary, NPRC overexpression in endothelial cells resulted in opposite effects. Mechanistically, the anti-inflammation and anti-atherosclerosis effects of NPRC deletion involved activation of cAMP/PKA pathway, leading to downstream upregulated AKT1 pathway and downregulated NF-κB pathway. In conclusion, NPRC deletion reduced the size and instability of atherosclerotic lesions in ApoE-/- mice via attenuating inflammation and endothelial cell apoptosis and increasing eNOS expression by modulating cAMP/PKA-AKT1 and NF-κB pathways. Thus, targeting NPRC may provide a promising approach to the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Cheng Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Jie Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuxia Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
Meng L, Lu Y, Wang X, Cheng C, Xue F, Xie L, Zhang Y, Sui W, Zhang M, Zhang Y, Zhang C. NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways. SCIENCE ADVANCES 2023; 9:eadd4222. [PMID: 37531438 PMCID: PMC10396312 DOI: 10.1126/sciadv.add4222] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Cardiac fibrosis plays a key role in the progression of diabetic cardiomyopathy (DCM). Previous studies demonstrated the cardioprotective effects of natriuretic peptides. However, the effects of natriuretic peptide receptor C (NPRC) on cardiac fibrosis in DCM remains unknown. Here, we observed that myocardial NPRC expression was increased in mice and patients with DCM. NPRC-/- diabetic mice showed alleviated cardiac fibrosis, as well as improved cardiac function and remodeling. NPRC knockdown in both cardiac fibroblasts and cardiomyocytes decreased collagen synthesis and proliferation of cardiac fibroblasts. RNA sequencing identified that NPRC deletion up-regulated the expression of TGF-β-induced factor homeobox 1 (TGIF1), which inhibited the phosphorylation of Smad2/3. Furthermore, TGIF1 up-regulation was mediated by the activation of cAMP/PKA and cGMP/PKG signaling induced by NPRC deletion. These findings suggest that NPRC deletion attenuated cardiac fibrosis and improved cardiac remodeling and function in diabetic mice, providing a promising approach to the treatment of diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinlu Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Xie
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaoyuan Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | | | - Yun Zhang
- Corresponding author. (Y.Z.); (C.Z.)
| | | |
Collapse
|
6
|
Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci 2022; 23:ijms232214415. [PMID: 36430893 PMCID: PMC9697447 DOI: 10.3390/ijms232214415] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP) are true hormones produced and released by cardiomyocytes, exerting several systemic effects. Together with C-type NP (CNP), mainly expressed by endothelial cells, they also exert several paracrine and autocrine activities on the heart itself, contributing to cardiovascular (CV) health. In addition to their natriuretic, vasorelaxant, metabolic and antiproliferative systemic properties, NPs prevent cardiac hypertrophy, fibrosis, arrhythmias and cardiomyopathies, counteracting the development and progression of heart failure (HF). Moreover, recent studies revealed that a protein structurally similar to NPs mainly produced by skeletal muscles and osteoblasts called musclin/osteocrin is able to interact with the NPs clearance receptor, attenuating cardiac dysfunction and myocardial fibrosis and promoting heart protection during pathological overload. This narrative review is focused on the direct activities of this molecule family on the heart, reporting both experimental and human studies that are clinically relevant for physicians.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (R.S.); Tel.: +39-071-5964696
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| | - Paola Schiavi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| |
Collapse
|
7
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Egom EEA. Natriuretic Peptide Clearance Receptor (NPR-C) Pathway as a Novel Therapeutic Target in Obesity-Related Heart Failure With Preserved Ejection Fraction (HFpEF). Front Physiol 2021; 12:674254. [PMID: 34093235 PMCID: PMC8176210 DOI: 10.3389/fphys.2021.674254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a major public health problem with cases projected to double over the next two decades. There are currently no US Food and Drug Administration–approved therapies for the health-related outcomes of HFpEF. However, considering the high prevalence of this heterogeneous syndrome, a directed therapy for HFpEF is one the greatest unmet needs in cardiovascular medicine. Additionally, there is currently a lack of mechanistic understanding about the pathobiology of HFpEF. The phenotyping of HFpEF patients into pathobiological homogenous groups may not only be the first step in understanding the molecular mechanism but may also enable the development of novel targeted therapies. As obesity is one of the most common comorbidities found in HFpEF patients and is associated with many cardiovascular effects, it is a viable candidate for phenotyping. Large outcome trials and registries reveal that being obese is one of the strongest independent risk factors for developing HFpEF and that this excess risk may not be explained by traditional cardiovascular risk factors. Recently, there has been increased interest in the intertissue communication between adipose tissue and the heart. Evidence suggests that the natriuretic peptide clearance receptor (NPR-C) pathway may play a role in the development and pathobiology of obesity-related HFpEF. Therefore, therapeutic manipulations of the NPR-C pathway may represent a new pharmacological strategy in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Emmanuel Eroume A Egom
- Institut du Savoir Montfort, Hôpital Montfort, University of Ottawa, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| |
Collapse
|
9
|
Alimadadi A, Munroe PB, Joe B, Cheng X. Meta-Analysis of Dilated Cardiomyopathy Using Cardiac RNA-Seq Transcriptomic Datasets. Genes (Basel) 2020; 11:genes11010060. [PMID: 31948008 PMCID: PMC7017089 DOI: 10.3390/genes11010060] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Several studies have used RNA-sequencing (RNA-seq) to profile differentially expressed genes (DEGs) associated with DCM. In this study, we aimed to profile gene expression signatures and identify novel genes associated with DCM through a quantitative meta-analysis of three publicly available RNA-seq studies using human left ventricle tissues from 41 DCM cases and 21 control samples. Our meta-analysis identified 789 DEGs including 581 downregulated and 208 upregulated genes. Several DCM-related genes previously reported, including MYH6, CKM, NKX2-5 and ATP2A2, were among the top 50 DEGs. Our meta-analysis also identified 39 new DEGs that were not detected using those individual RNA-seq datasets. Some of those genes, including PTH1R, ADAM15 and S100A4, confirmed previous reports of associations with cardiovascular functions. Using DEGs from this meta-analysis, the Ingenuity Pathway Analysis (IPA) identified five activated toxicity pathways, including failure of heart as the most significant pathway. Among the upstream regulators, SMARCA4 was downregulated and prioritized by IPA as the top affected upstream regulator for several DCM-related genes. To our knowledge, this study is the first to perform a transcriptomic meta-analysis for clinical DCM using RNA-seq datasets. Overall, our meta-analysis successfully identified a core set of genes associated with DCM.
Collapse
Affiliation(s)
- Ahmad Alimadadi
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.); (B.J.)
- Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
- National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.); (B.J.)
- Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xi Cheng
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.); (B.J.)
- Correspondence: ; Tel.: +1-419-383-4076
| |
Collapse
|
10
|
Therapeutic targets and drugs for hyper-proliferation of vascular smooth muscle cells. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00469-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Pulmonary Arterial Hypertension Due to NPR-C Mutation: A Novel Paradigm for Normal and Pathologic Remodeling? Int J Mol Sci 2019; 20:ijms20123063. [PMID: 31234560 PMCID: PMC6628360 DOI: 10.3390/ijms20123063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Idiopathic Pulmonary Arterial Hypertension (IPAH) is a deadly and disabling disease characterized by severe vascular remodeling of small pulmonary vessels by fibroblasts, myofibroblasts and vascular smooth muscle cell proliferation. Recent studies suggest that the Natriuretic Peptide Clearance Receptor (NPR-C) signaling pathways may play a crucial role in the development of IPAH. Reduced expression or function of NPR-C signaling in pulmonary artery smooth muscle cells may contribute to the pulmonary vascular remodeling, which is characteristic of this disease. The likely mechanisms may involve an impaired interaction between NPR-C, specific growth factors and other signal transduction pathways including but not limited to Gqα/mitogen-activated protein kinase (MAPK)/PI3K and AKT signaling. The resulting failure of growth suppression in pulmonary artery smooth muscle cells provides critical clues to the cellular pathobiology of IPAH. The reciprocal regulation of NPR-C signaling in models of tissue remodeling may thus provide new insights to our understanding of IPAH.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Heart failure (HF) continues to be a public health burden despite advances in therapy, and the natriuretic peptide (NP) system is clearly of critical importance in this setting, spawning valuable diagnostic and prognostic testing, such as B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP), as well as current and future therapeutics, including recombinant natriuretic peptides (e.g., carperitide, nesiritide) and recently sacubitril, which inhibits the key clearance mechanism for NPs. This article intends to summarize the existing evidence for the role of NP system genetic variation on cardiovascular phenotypes relevant to HF with particular focus on the potential impact on pharmacologic therapies. RECENT FINDINGS Several genes in NP system have been interrogated, in many cases genetic variation impacting protein quantity and function or related disease states. Recent data supports genetic variants potentially impacting pharmacokinetics or dynamics of medications targeting the pathway. Growing evidence indicates the importance of genetic variation to the functioning of the NP system and its pharmacologic manipulation.
Collapse
Affiliation(s)
- Ahmed Abuzaanona
- Department of Internal Medicine, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI, 48202, USA
| | - David Lanfear
- Heart and Vascular Institute, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
13
|
Zhao C, Zhu P, Shen Q, Jin L. Prospective association of a genetic risk score with major adverse cardiovascular events in patients with coronary artery disease. Medicine (Baltimore) 2017; 96:e9473. [PMID: 29390587 PMCID: PMC5758289 DOI: 10.1097/md.0000000000009473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many susceptibility loci associated with coronary artery disease (CAD) have been identified using genome-wide association studies (GWAS). This study aimed to examine whether a composite of single nucleotide polymorphisms (SNPs) derived from GWAS could identify the risk of major adverse cardiovascular events (MACEs) in patients with established CAD. There were 1059 patients with CAD were included in the analysis. Of the participants, 686 were on statin treatment at the start of follow-up. A weighted genetic risk score (wGRS) was calculated as the sum of risk alleles multiplied by the hazard ratio for a particular SNP. In single variant analyses, rs579459, rs4420638, and rs2107595 were associated with an increased risk of MACE. A wGRS was further constructed to evaluate the cumulative effect of the 3 SNPs on the prognosis of CAD. The risk of MACE among patients with high and intermediate wGRS was 1.968- and 1.838-fold, respectively, higher than those with low wGRS. This effect was more evident in patients using lipid-lowering medication and with hypertension. Furthermore, the interaction analysis revealed that lipid-lowering medication and hypertension interacted with the genetic effect off wGRS on the risk of MACE in patients using lipid-lowering medication or with hypertension (Pinteraction < .001). We further analyzed the follow-up change in low-density lipoprotein cholesterol (LDL-C) level at 6 months after CAD disclosure and evaluated whether that was due to wGRS or statin use. The lowest reduction in LDL-C was observed in patients with high GRS who received statin treatment. Furthermore, LDL-C reduction of patients with intermediate wGRS was less than those with low wGRS in patients treated with statin. Taken together, a wGRS comprised of SNPs significantly predicts MACE in CAD patients receiving statin treatment and hypertension.
Collapse
Affiliation(s)
| | - Pin Zhu
- Department of Cardiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
14
|
Wang YT, Wang YH, Ma YT, Fu ZY, Yang YN, Ma X, Li XM, Adi D, Liu F, Chen BD. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: a case-control study. Oncotarget 2017; 8:89055-89063. [PMID: 29179498 PMCID: PMC5687668 DOI: 10.18632/oncotarget.21649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023] Open
Abstract
Several studies suggest an important role of Acyl-CoA: cholesterol acyltransferase-1(ACAT-1) in the development of atherosclerosis. The aim of present study was to investigate whether there exists a possible correlation between genetic variations in ACAT-1 genes and coronary artery disease (CAD) risk. Four polymorphisms (rs1044925, rs11545566, rs12121758 and rs10913733) were finally selected and genotyped in 750 CAD patients and 580 health controls, using the improved multiplex ligation detection reaction (iMLDR) method. We found that the rs11545566 G allele was associated with a significantly elevated CAD risk [GG vs. AA: adjusted odds ratio (AOR) = 1.62, 95% confidence interval (CI) = 1.13-2.32, P = 0.008; GA/GG vs. AA: AOR = 1.67, 95% CI = 1.22-2.29, P = 0.001]. The rs10913733 G allele was also associated with a significantly elevated CAD risk (GG vs. TT: AOR = 1.57, 95% CI = 1.08-2.28, P = 0.018; GT/GG vs. TT: AOR = 1.39, 95% CI = 1.07-1.79, P = 0.013). Multivariate linear regression analysis showed that the rs11545566 polymorphism was independently associated with the Gensini scores (P = 0.005). The Gensini score of subjects in the variant GG genotype group and the GG/GA genotype group were higher than the score of subjects in the AA genotype group (32.49 ± 26.60 and 31.26 ± 26.96 vs. 23.45 ± 21.64; P = 0.001 and 0.002, respectively). Our results demonstrate that ACAT-1 rs1154556 and rs10913733 polymorphism are novel genetic factors in the development of CAD. Rs11545566 was also associated with the severity of CAD.
Collapse
Affiliation(s)
- Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Ying-Hong Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| |
Collapse
|