1
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
2
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
3
|
van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021; 12:790317. [PMID: 34966391 PMCID: PMC8710542 DOI: 10.3389/fimmu.2021.790317] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans - sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.
Collapse
Affiliation(s)
- Eline J. H. van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Büll
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lenneke A. M. Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Schwarz JJ, Grundmann L, Kokot T, Kläsener K, Fotteler S, Medgyesi D, Köhn M, Reth M, Warscheid B. Quantitative proteomics identifies PTP1B as modulator of B cell antigen receptor signaling. Life Sci Alliance 2021; 4:4/11/e202101084. [PMID: 34526379 PMCID: PMC8473724 DOI: 10.26508/lsa.202101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
This study analyses the function of the protein tyrosine phosphatase 1B identifying its binding partners and dephosphorylation targets for modulating B cell antigen receptor signaling. B cell antigen receptor (BCR) signaling is initiated by protein kinases and limited by counteracting phosphatases that currently are less well studied in their regulation of BCR signaling. Here, we used the B cell line Ramos to identify and quantify human B cell signaling components. Specifically, a protein tyrosine phosphatase profiling revealed a high expression of the protein tyrosine phosphatase 1B (PTP1B) in Ramos and human naïve B cells. The loss of PTP1B leads to increased B cell activation. Through substrate trapping in combination with quantitative mass spectrometry, we identified 22 putative substrates or interactors of PTP1B. We validated Igα, CD22, PLCγ1/2, CBL, BCAP, and APLP2 as specific substrates of PTP1B in Ramos B cells. The tyrosine kinase BTK and the two adaptor proteins GRB2 and VAV1 were identified as direct binding partners and potential substrates of PTP1B. We showed that PTP1B dephosphorylates the inhibitory receptor protein CD22 at phosphotyrosine 807. We conclude that PTP1B negatively modulates BCR signaling by dephosphorylating distinct phosphotyrosines in B cell-specific receptor proteins and various downstream signaling components.
Collapse
Affiliation(s)
- Jennifer J Schwarz
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lorenz Grundmann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Kokot
- Integrative Signalling Research, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- Department for Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sandra Fotteler
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - David Medgyesi
- Department for Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Integrative Signalling Research, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Department for Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Meyer SJ, Böser A, Korn MA, Koller C, Bertocci B, Reimann L, Warscheid B, Nitschke L. Cullin 3 Is Crucial for Pro-B Cell Proliferation, Interacts with CD22, and Controls CD22 Internalization on B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3360-3374. [DOI: 10.4049/jimmunol.1900925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
|
6
|
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Collapse
Affiliation(s)
- Shiteng Duan
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| | - James C Paulson
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| |
Collapse
|
7
|
Meyer SJ, Linder AT, Brandl C, Nitschke L. B Cell Siglecs-News on Signaling and Its Interplay With Ligand Binding. Front Immunol 2018; 9:2820. [PMID: 30559744 PMCID: PMC6286995 DOI: 10.3389/fimmu.2018.02820] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
CD22 and Siglec-G are members of the Siglec family. Both are inhibitory co-receptors on the surface of B cells and inhibit B-cell receptor induced signaling, characterized by inhibition of the calcium mobilization and cellular activation. CD22 functions predominantly as an inhibitor on conventional B cells, while Siglec-G is an important inhibitor on the B1a-cell subset. These two B-cell Siglecs do not only inhibit initial signaling, but also have an important function in preventing autoimmunity, as double deficient mice develop a lupus-like phenotype with age. Siglecs are characterized by their conserved ability to bind terminal sialic acid of glycans on the cell surface, which is important to regulate the inhibitory role of Siglecs. While CD22 binds α2,6-linked sialic acids, Siglec-G can bind both α2,6-linked and α2,3-linked sialic acids. Interestingly, ligand binding is differentially regulating the ability of CD22 and Siglec-G to control B-cell activation. Within the last years, quite a few studies focused on the different functions of B-cell Siglecs and the interplay of ligand binding and signal inhibition. This review summarizes the role of CD22 and Siglec-G in regulating B-cell receptor signaling, membrane distribution with the importance of ligand binding, preventing autoimmunity and the role of CD22 beyond the naïve B-cell stage. Additionally, this review article features the long time discussed interaction between CD45 and CD22 with highlighting recent data, as well as the interplay between CD22 and Galectin-9 and its influence on B-cell receptor signaling. Moreover, therapeutical approaches targeting human CD22 will be elucidated.
Collapse
Affiliation(s)
- Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Alexandra T Linder
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Carolin Brandl
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Clark EA, Giltiay NV. CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Front Immunol 2018; 9:2235. [PMID: 30323814 PMCID: PMC6173129 DOI: 10.3389/fimmu.2018.02235] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
CD22 (Siglec 2) is a receptor predominantly restricted to B cells. It was initially characterized over 30 years ago and named “CD22” in 1984 at the 2nd International workshop in Boston (1). Several excellent reviews have detailed CD22 functions, CD22-regulated signaling pathways and B cell subsets regulated by CD22 or Siglec G (2–4). This review is an attempt to highlight recent and possibly forgotten findings. We also describe the role of CD22 in autoimmunity and the great potential for CD22-based immunotherapeutics for the treatment of autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA, United States.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Woodcock ME, Idoko-Akoh A, McGrew MJ. Gene editing in birds takes flight. Mamm Genome 2017; 28:315-323. [PMID: 28612238 PMCID: PMC5569130 DOI: 10.1007/s00335-017-9701-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
The application of gene editing (GE) technology to create precise changes to the genome of bird species will provide new and exciting opportunities for the biomedical, agricultural and biotechnology industries, as well as providing new approaches for producing research models. Recent advances in modifying both the somatic and germ cell lineages in chicken indicate that this species, and conceivably soon other avian species, has joined a growing number of model organisms in the gene editing revolution.
Collapse
Affiliation(s)
- Mark E Woodcock
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Alewo Idoko-Akoh
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
10
|
Zhou Q, Wei SS, Wang H, Wang Q, Li W, Li G, Hou JW, Chen XM, Chen J, Xu WP, Li YG, Wang YP. Crucial Role of ROCK2-Mediated Phosphorylation and Upregulation of FHOD3 in the Pathogenesis of Angiotensin II-Induced Cardiac Hypertrophy. Hypertension 2017; 69:1070-1083. [PMID: 28438902 DOI: 10.1161/hypertensionaha.116.08662] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/12/2016] [Accepted: 03/21/2017] [Indexed: 01/01/2023]
Abstract
Cardiac hypertrophy is characterized by increased myofibrillogenesis. Angiotensin II (Ang-II) is an essential mediator of the pressure overload-induced cardiac hypertrophy in part through RhoA/ROCK (small GTPase/Rho-associated coiled-coil containing protein kinase) pathway. FHOD3 (formin homology 2 domain containing 3), a cardiac-restricted member of diaphanous-related formins, is crucial in regulating myofibrillogenesis in cardiomyocytes. FHOD3 maintains inactive through autoinhibition by an intramolecular interaction between its C- and N-terminal domains. Phosphorylation of the 3 highly conserved residues (1406S, 1412S, and 1416T) within the C terminus (CT) of FHOD3 by ROCK1 is sufficient for its activation. However, it is unclear whether ROCK-mediated FHOD3 activation plays a role in the pathogenesis of Ang-II-induced cardiac hypertrophy. In this study, we detected increases in FHOD3 expression and phosphorylation in cardiomyocytes from Ang-II-induced rat cardiac hypertrophy models. Valsartan attenuated such increases. In cultured neonate rat cardiomyocytes, overexpression of phosphor-mimetic mutant FHOD3-DDD, but not wild-type FHOD3, resulted in myofibrillogenesis and cardiomyocyte hypertrophy. Expression of a phosphor-resistant mutant FHOD3-AAA completely abolished myofibrillogenesis and attenuated Ang-II-induced cardiomyocyte hypertrophy. Pretreatment of neonate rat cardiomyocytes with ROCK inhibitor Y27632 reduced Ang-II-induced FHOD3 activation and upregulation, suggesting the involvement of ROCK activities. Silencing of ROCK2, but not ROCK1, in neonate rat cardiomyocytes, significantly lessened Ang-II-induced cardiomyocyte hypertrophy. ROCK2 can directly phosphorylate FHOD3 at both 1412S and 1416T in vitro and is more potent than ROCK1. Both kinases failed to phosphorylate 1406S. Coexpression of FHOD3 with constitutively active ROCK2 induced more stress fiber formation than that with constitutively active ROCK1. Collectively, our results demonstrated the importance of ROCK2 regulated FHOD3 expression and activation in Ang-II-induced myofibrillogenesis, thus provided a novel mechanism for the pathogenesis of Ang-II-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Qing Zhou
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Si-Si Wei
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Hong Wang
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Qian Wang
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Wei Li
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Gang Li
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Jian-Wen Hou
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Xiao-Meng Chen
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Jie Chen
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Wei-Ping Xu
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Yi-Gang Li
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China.
| | - Yue-Peng Wang
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China.
| |
Collapse
|