1
|
Zhang W, Zhu Z, Liu Y. The impact of the ATP-binding cassette (ABC) transporter family on multidrug resistance in head and neck tumors. Mol Biol Rep 2025; 52:256. [PMID: 39982595 DOI: 10.1007/s11033-025-10321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
The ATP-binding cassette (ABC) transporter family is among the largest protein superfamilies, consisting of seven subfamilies, and plays an important role in various physiological processes and in the clinical manifestations of many diseases. The early clinical signs of head and neck cancer (HNC) are often subtle, resulting in most patients being diagnosed at more advanced stages. This late diagnosis adversely affects tumor treatment, and the resistance of certain tumors to chemotherapy further poses significant challenges for clinical management. Several previous studies have indicated a correlation between the ABC protein family and multidrug resistance (MDR) in tumors. This article offers a thorough review of the subfamilies, structures, functions, and roles of ABC transporters in MDR related to head and neck tumors, with the aim of providing insights and recommendations for overcoming MDR in this context.
Collapse
Affiliation(s)
- Wanqing Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengxin Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuehui Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Soni J, Revathi D, Dhanraj G, Ramasubburayan R. Bioinspired green synthesis of ZnO nanoparticles by marine-derived Streptomyces plicatus and its multifaceted biomedicinal properties. Microb Pathog 2024; 193:106758. [PMID: 38906493 DOI: 10.1016/j.micpath.2024.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
The present study explores the bioinspired green synthesis of zinc oxide nanoparticles (ZnONPs) using marine Streptomyces plicatus and its potent antibacterial, antibiofilm activity against dental caries forming Streptococcus mutans MTCC and S. mutans clinical isolate (CI), cytotoxicity against oral KB cancer cells, hemolysis against blood erythrocytes and artemia toxicity. The bioinspired ZnONPs showed a distinctive absorption peak at 375 nm in UV-Vis spectra, the FT-IR spectra divulged the active functional groups, and XRD confirmed the crystalline nature of the nanoparticles with an average grain size of 41.76 nm. SEM analysis evidenced hexagonal morphology, and EDX spectra affirmed the presence of zinc. The ZnONPs exerted higher antagonistic activity against S. mutans MTCC (Inhibitory zone: 19 mm; MIC: 75 μg/ml) than S. mutans CI (Inhibitory zone: 17 mm; MIC: 100 μg/ml). Results of biofilm inhibitory activity showed a concentration-dependent reduction with S. mutans MTCC (15 %-95 %) more sensitive than S. mutans CI (13 %-89 %). The 50 % biofilm inhibitory concentration (BIC50) of ZnONPs against S. mutans MTCC was considerably lower (71.76 μg/ml) than S. mutans CI (78.13 μg/ml). Confocal Laser Scanning Microscopic visuals clearly implied that ZnONPs effectively distorted the biofilm architecture of both S. mutans MTCC and S. mutans CI. This was further bolstered by a remarkable rise in protein leakage (19 %-85 %; 15 %-77 %) and a fall in exopolysaccharide production (34 mg-7 mg; 49 mg-12 mg). MTT cytotoxicity of ZnONPs recorded an IC50 value of 22.06 μg/ml against KB cells. Acridine orange/ethidium bromide staining showed an increasing incidence of apoptosis in KB cells. Brine shrimp cytotoxicity using Artemia salina larvae recorded an LC50 value of 78.41 μg/ml. Hemolysis assay substantiated the biocompatibility of the ZnONPs. This study underscores the multifaceted application of bioinspired ZnONPs in dentistry.
Collapse
Affiliation(s)
- Jeesha Soni
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India
| | - Duraisamy Revathi
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India
| | - Ganapathy Dhanraj
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India.
| |
Collapse
|
3
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Asath NAA, Ravichandran P, Vasu R. Usnic acid alleviates inflammatory responses and induces apoptotic signaling through inhibiting NF-ĸB expressions in human oral carcinoma cells. Cell Biochem Funct 2024; 42:e4074. [PMID: 38874340 DOI: 10.1002/cbf.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Usnic acid (UA) is a unique bioactive substance in lichen with potential anticancer properties. Recently, we have reported that UA can reduce 7,12-dimethylbenz[a] anthracene-induced oral carcinogenesis by inhibiting oxidative stress, inflammation, and cell proliferation in a male golden Syrian hamster in vivo model. The present study aims to explore the relevant mechanism of cell death induced by UA on human oral carcinoma (KB) cell line in an in vitro model. We found that UA can induce apoptosis (cell death) in KB cells by decreasing cell viability, increasing the production of reactive oxygen species (ROS), depolarizing mitochondrial membrane potential (MMP) levels, causing nuclear fragmentation, altering apoptotic morphology, and causing excessive DNA damage. Additionally, UA inhibits the expression of Bcl-2, a protein that promotes cell survival, while increasing the expression of p53, Bax, Cytochrome-c, Caspase-9, and 3 proteins in KB cells. UA also inhibits the expression of nuclear factor-κB (NF-κB), a protein that mediates the activation of pro-inflammatory cytokines such as TNF-α and IL-6, in KB cells. Furthermore, UA promotes apoptosis by enhancing the mitochondrial-mediated apoptotic mechanism through oxidative stress, depletion of cellular antioxidants, and an inflammatory response. Ultimately, the findings of this study suggest that UA may have potential as an anticancer therapeutic agent for oral cancer treatments.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | | | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Rajeswari Vasu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| |
Collapse
|
4
|
Patel D, Sethi N, Patel P, Shah S, Patel K. Exploring the potential of P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs: A comprehensive review. Eur J Pharm Biopharm 2024; 198:114267. [PMID: 38514020 DOI: 10.1016/j.ejpb.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Due to the high prevalence of cancer, progress in the management of cancer is the need of the hour. Most cancer patients develop chemotherapeutic drug resistance, and many remain insidious due to overexpression of Multidrug Resistance Protein 1 (MDR1), also known as Permeability-glycoprotein (P-gp) or ABCB1 transporter (ATP-binding cassette subfamily B member 1). P-gp, a transmembrane protein that protects vital organs from outside chemicals, expels medications from malignant cells. The blood-brain barrier (BBB), gastrointestinal tract (GIT), kidneys, liver, pancreas, and cancer cells overexpress P-gp on their apical surfaces, making treatment inefficient and resistant. Compounds that compete with anticancer medicines for transportation or directly inhibit P-gp may overcome biological barriers. Developing nanotechnology-based formulations may help overcome P-gp-mediated efflux and improve bioavailability and cell chemotherapeutic agent accumulation. Nanocarriers transport pharmaceuticals via receptor-mediated endocytosis, unlike passive diffusion, which bypasses ABCB1. Anticancer drugs and P-gp inhibitors in nanocarriers may synergistically increase drug accumulation and chemotherapeutic agent toxicity. The projection of desirable binding and effect may be procured initially by molecular docking of the inhibitor with P-gp, enabling the reduction of preliminary trials in formulation development. Here, P-gp-mediated efflux and several possible outcomes to overcome the problems associated with currently prevalent cancer treatments are highlighted.
Collapse
Affiliation(s)
- Dhvani Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Nutan Sethi
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Paresh Patel
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India.
| |
Collapse
|
5
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Moiseeva N, Eroshenko D, Laletina L, Rybalkina E, Susova O, Karamysheva A, Tolmacheva I, Nazarov M, Grishko V. The Molecular Mechanisms of Oleanane Aldehyde-β-enone Cytotoxicity against Doxorubicin-Resistant Cancer Cells. BIOLOGY 2023; 12:biology12030415. [PMID: 36979107 PMCID: PMC10045559 DOI: 10.3390/biology12030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Oleanane aldehyde-β-enone (OA), being the semi-synthetic derivative of the triterpenoid betulin, effectively inhibits the proliferation of HBL-100 and K562 cancer cells (IC50 0.47–0.53 µM), as well as the proliferation of their resistant subclones with high P-gp expression HBL-100/Dox, K562/i-S9 and K562/i-S9_Dox (IC50 0.45−1.24 µM). A molecular docking study, rhodamine efflux test, synergistic test with Dox, and ABC transporter gene expression were used to investigate the ability of OA to act as a P-gp substrate or inhibitor against Dox-resistant cells. We noted a trend toward a decrease in ABCB1, ABCC1 and ABCG2 expression in HBL-100 cells treated with OA. The in silico and in vitro methods suggested that OA is neither a direct inhibitor nor a competitive substrate of P-gp in overexpressing P-gp cancer cells. Thus, OA is able to overcome cellular resistance and can accumulate in Dox-resistant cells to realize toxic effects. The set of experiments suggested that OA toxic action can be attributed to activating intrinsic/extrinsic or only intrinsic apoptosis pathways in Dox-sensitive and Dox-resistant cancer cells, respectively. The cytotoxicity of OA in resistant cells is likely mediated by a mitochondrial cell death pathway, as demonstrated by positive staining with Annexin V–FITC, an increasing number of cells in the subG0/G1 phase, reactive oxygen species generation, mitochondrial dysfunction, cytochrome c migration and caspases-9,-6 activation.
Collapse
Affiliation(s)
- Natalia Moiseeva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Daria Eroshenko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Lidia Laletina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Ekaterina Rybalkina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Olga Susova
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Aida Karamysheva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Irina Tolmacheva
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Mikhail Nazarov
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Victoria Grishko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
- Correspondence:
| |
Collapse
|
7
|
Li G, Zhao CY, Wu Q, Kang Z, Zhang JT, Guan SY, Jin HW, Zhang YB, Na XL. Di(2-ethylhexyl) phthalate disturbs cholesterol metabolism through oxidative stress in rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103958. [PMID: 35970509 DOI: 10.1016/j.etap.2022.103958] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is widely used and has been implicated in hepatotoxicity, although the mechanism is unclear. Here, we investigated the effect of DEHP on hepatic cholesterol metabolism in SD rats exposed to 0 and 300 mg/kg/day DEHP for 12 weeks. An RNA-Seq analysis was performed to describe the hepatic responses to long-term DEHP exposure in combination with serological and oxidative stress parameter measurements. DEHP increased the serum levels of total cholesterol (TC), high-density lipoprotein (HDL), and alanine transaminase (ALT). Moreover, DEHP increased the content of malondialdehyde (MDA) and decreased antioxidant enzyme activities in the liver. Transcriptomic results revealed that DEHP dramatically changed the cholesterol metabolism pathway and oxidation-reduction process and depressed gene expression involved in cholesterol efflux and monooxygenase activity. Total antioxidant capacity (T-AOC) positively correlated with Abcg5 and Abcg8. Overall, this study showed the mechanisms underlying hepatotoxicity caused by DEHP, providing new insights into understanding DEHP poisoning.
Collapse
Affiliation(s)
- Gang Li
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China; Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, China
| | - Chen-Yang Zhao
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Qian Wu
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Zhen Kang
- Department of Environment Hygiene Harbin Center for Disease Control and Prevention, Harbin 150086, Heilongjiang Province, China
| | - Jia-Tai Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Si-Yuan Guan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Hong-Wei Jin
- Guangming District Center for Disease Control and Prevention, Guangming District, Shenzhen 518106, Guangdong Province, China
| | - Yun-Bo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China.
| | - Xiao-Lin Na
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin 150086, Heilongjiang Province, China.
| |
Collapse
|
8
|
Rybalkina EY, Moiseeva NI, Karamysheva AF, Eroshenko DV, Konysheva AV, Nazarov AV, Grishko VV. Triterpenoids with modified A-ring as modulators of P-gp-dependent drug-resistance in cancer cells. Chem Biol Interact 2021; 348:109645. [PMID: 34516973 DOI: 10.1016/j.cbi.2021.109645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
Semi-synthetic A-cycle modified triterpenic derivatives with A-cycle condensed with a heterocyclic fragment (compound 1) and fragmented A-ring (compound 2) were tested for cytotoxicity against several tumor cell cultures and doxorubicin (Dox)-resistant cell lines. The equal cytotoxicity of the tested compounds to the parental tumor cell lines (HBL-100, K562) and their resistant subclones (HBL-100/Dox, K562/i-S9) was revealed. The overexpression of ABCB1 (MDR1) gene and P-glycoprotein (P-gp) was confirmed for both resistant subclones of tumor cells. Compounds 1 and 2 were shown to inhibit the ABC-transporter gene expression (MDR1, MRP, MVP, and BCRP) and the transport of well-known P-gp substrate Rhodamine 123 from resistant cells. The docking of triterpenoids 1 and 2 into the drug binding site of P-gp revealed a similarity between the conformation of the tested triterpenoids and that of classical inhibitor verapamil, thus assuming these compounds to be more likely the inhibitors than the substrates of P-gp. Any tested triterpenic derivatives, when combined at non-toxic concentrations with doxorubicin, improved cytotoxic effect of the therapeutic drug against resistant subclones of tumor cells.
Collapse
Affiliation(s)
- Ekaterina Yu Rybalkina
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Natalia I Moiseeva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Aida F Karamysheva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Daria V Eroshenko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Anastasia V Konysheva
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Alexei V Nazarov
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Victoria V Grishko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia.
| |
Collapse
|
9
|
Anti-Cancer Effects of Glaucarubinone in the Hepatocellular Carcinoma Cell Line Huh7 via Regulation of the Epithelial-To-Mesenchymal Transition-Associated Transcription Factor Twist1. Int J Mol Sci 2021; 22:ijms22041700. [PMID: 33567682 PMCID: PMC7915236 DOI: 10.3390/ijms22041700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC.
Collapse
|
10
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
11
|
Shankaraiah N, Nekkanti S, Ommi O, P.S. LS. Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer. Curr Med Chem 2019; 26:7059-7080. [DOI: 10.2174/0929867325666180410110729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
:
The efficacy of successful cancer therapies is frequently hindered by the development of drug
resistance in the tumor. The term ‘drug resistance’ is used to illustrate the decreased effectiveness of a
drug in curing a disease or alleviating the symptoms of the patient. This phenomenon helps tumors to survive
the damage caused by a specific drug or group of drugs. In this context, studying the mechanisms of
drug resistance and applying this information to design customized treatment regimens can improve therapeutic
efficacy as well as the curative outcome. Over the years, numerous Multidrug Resistance (MDR)
mechanisms have been recognized and tremendous effort has been put into developing agents to address
them. The integration of data emerging from the elucidation of molecular and biochemical pathways and
specific tumor-associated factors has shown tremendous promise within the oncology community for improving
patient outcomes. In this review, we provide an overview of the utility of these molecular and biochemical
signaling processes as well as tumor-associated factors associated with MDR, for the rational
selection of cancer treatment strategies.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Shalini Nekkanti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ojaswitha Ommi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Lakshmi Soukya P.S.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| |
Collapse
|
12
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
13
|
|
14
|
Subban K, Singh S, Subramani R, Johnpaul M, Chelliah J. Fungal 7-epi-10-deacetyltaxol produced by an endophytic Pestalotiopsis microspora induces apoptosis in human hepatocellular carcinoma cell line (HepG2). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:504. [PMID: 29183320 PMCID: PMC5706334 DOI: 10.1186/s12906-017-1993-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/01/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Paclitaxel (taxol) is a potent anticancer drug that is used in the treatment of a wide variety of cancerous. In the present study, we identified a taxol derivative named 7-epi-10-deacetyltaxol (EDT) from the culture of an endophytic fungus Pestalotiopsis microspora isolated from the bark of Taxodium mucronatum. This study was carried out to investigate the effects of fungal EDT on cell proliferation, the induction of apoptosis and the molecular mechanisms of apoptosis in human hepatoma HepG2 cells in vitro. METHODS The endophytic fungus was identified by traditional and molecular taxonomical characterization and the fungal EDT was purified using column chromatography and confirmed by various spectroscopic and chromatographic comparisons with authentic paclitaxel. We studied the in vitro effects of EDT on HepG2 cells for parameters such as cell cycle distribution, DNA fragmentation, reactive oxygen species (ROS) generation and nuclear morphology. Further, western blot analysis was used to evaluate Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), p38-mitogen activated protein kinase (MAPK) and poly [ADP-ribose] polymerase (PARP) expression. RESULTS We demonstrate that the fungal EDT exhibited significant in vitro cytotoxicity in HepG2 cells. We investigated cytotoxicity mechanism of EDT in HepG2 cells. The results showed nuclear condensation and DNA fragmentation were observed in cells treated with fungal EDT. Besides, the fungal EDT arrested HepG2 cells at G2/M phase of cell cycle. Furthermore, fungal EDT induced apoptosis in HepG2 cells in a dose-dependent manner associated with ROS generation and increased Bax/Bcl-2 ratio, p38 MAPKs and PARP cleavage. CONCLUSIONS Our data show that EDT induced apoptotic cell death in HepG2 cells occurs through intrinsic pathway by generation of ROS mediated and activation of MAPK pathway. This is the first report for 7-epi-10-deacetyltaxol (EDT) isolated from a microbial source.
Collapse
Affiliation(s)
- Kamalraj Subban
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012 India
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu India
| | - Satpal Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Ramesh Subramani
- Department of Biology, College of Engineering, Science & Technology, Fiji National University, Natabua Campus, Lautoka, Fiji Islands
| | - Muthumary Johnpaul
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu India
| | - Jayabaskaran Chelliah
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012 India
| |
Collapse
|
15
|
Bai Z, Gao M, Zhang H, Guan Q, Xu J, Li Y, Qi H, Li Z, Zuo D, Zhang W, Wu Y. BZML, a novel colchicine binding site inhibitor, overcomes multidrug resistance in A549/Taxol cells by inhibiting P-gp function and inducing mitotic catastrophe. Cancer Lett 2017; 402:81-92. [PMID: 28576750 DOI: 10.1016/j.canlet.2017.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) interferes with the efficiency of chemotherapy. Therefore, developing novel anti-cancer agents that can overcome MDR is necessary. Here, we screened a series of colchicine binding site inhibitors (CBSIs) and found that 5-(3, 4, 5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) displayed potent cytotoxic activity against both A549 and A549/Taxol cells. We further explored the underlying mechanisms and found that BZML caused mitosis phase arrest by inhibiting tubulin polymerization in A549 and A549/Taxol cells. Importantly, BZML was a poor substrate for P-glycoprotein (P-gp) and inhibited P-gp function by decreasing P-gp expression at the protein and mRNA levels. Cell morphology changes and the expression of cycle- or apoptosis-related proteins indicated that BZML mainly drove A549/Taxol cells to die by mitotic catastrophe (MC), a p53-independent apoptotic-like cell death, whereas induced A549 cells to die by apoptosis. Taken together, our data suggest that BZML is a novel colchicine binding site inhibitor and overcomes MDR in A549/Taxol cells by inhibiting P-gp function and inducing MC. Our study also offers a new strategy to solve the problem of apoptosis-resistance.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Meiqi Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Huijuan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jingwen Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Huan Qi
- Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
16
|
Wu J, Zhang H, Xu Y, Zhang J, Zhu W, Zhang Y, Chen L, Hua W, Mao Y. Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma. BMC Neurol 2017; 17:70. [PMID: 28388894 PMCID: PMC5383964 DOI: 10.1186/s12883-017-0843-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Juglone is a natural pigment, which has cytotoxic effect against various human tumor cells. However, its cytotoxicity to glioma cells, especially to tumor stem-like cells (TSCs) has not been demonstrated. METHODS TSCs of glioma were enriched from U87 and two primary cells (SHG62, and SHG66) using serum-free medium supplemented with growth factors, including bFGF, EGF and B27. After treatment of juglone with gradient concentrations (0, 10, 20, and 40 μM), the viability and apoptosis of TSCs were evaluated by WST-8 assay and flow cytometry. Reactive oxygen species (ROS) was labeled by the cell-permeable fluorescent probe and detected with flow cytometry. ROS scavenger (NAC) and p38-MAPK inhibitor (SB203580) were applied to resist the cytotoxic effect. Caspase 9 cleavage and p38 phosphorylation (P-p38) were quantified by western blot. Juglone as well as temozolomide (TMZ) were administrated in intracranial xenografts and MR scan was performed every week to evaluate the anti-tumor effect in vivo. RESULTS Juglone could obviously inhibit the proliferation of TSCs in glioma by decreasing cell viability (P < 0.01) and inducing apoptosis (P < 0.01), which was accompanied by increased caspase 9 cleavage in a dose-dependent manner (P < 0.01). In the meantime, juglone could generate ROS significantly and increase p38 phosphorylation (P < 0.01). In addition, pretreatment with ROS scavenger or p38-MAPK inhibitor could reverse juglone-induced cytotoxicity (P < 0.01). More importantly, juglone could also suppress tumor growth in vivo and improve the survival of U87-bearing mice compared with control (P < 0.05), although TMZ seemed to have better effect. CONCLUSIONS Juglone could inhibit the growth of TSCs in gliomas through the activation of ROS-p38-MAPK pathway in vitro, and the anti-glioma effect was validated in vivo, which offers a potential therapeutic agent to gliomas.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China
| | - Haibo Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China
| | - Yang Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China
| | - Jingwen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China.,Department of Ultrasound, Hebei General Hospital, #348 West Heping Road, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China
| | - Yi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wurumuqi Road, Shanghai, 200040, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, #131 Dong'an Road, Shanghai, 200040, People's Republic of China.,State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200040, People's Republic of China.,The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
17
|
Wang YY, Chen YK, Hsu YL, Chiu WC, Tsai CH, Hu SCS, Hsieh PW, Yuan SSF. Synthetic β-nitrostyrene derivative CYT-Rx20 as inhibitor of oral cancer cell proliferation and tumor growth through glutathione suppression and reactive oxygen species induction. Head Neck 2017; 39:1055-1064. [PMID: 28346709 DOI: 10.1002/hed.24664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The β-nitrostyrene family possesses anticancer properties. In this study, β-nitrostyrene derivative CYT-Rx20 (3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene) was synthesized and investigated its anticancer activity in oral cancer. METHODS Anticancer activity of CYT-Rx20 and the underlying mechanisms were analyzed using cell viability assay, reactive oxygen species (ROS) generation assay, fluorescence-activated cell sorter analysis, annexin V staining, comet assay, glutathione (GSH)/glutathione disulfide (GSSG) ratio, immunoblotting, soft agar assay, nude mice xenograft study, and immunohistochemistry. RESULTS CYT-Rx20-induced cell apoptosis via ROS generation and mitochondrial membrane potential reduction, associated with release of mitochondrial cytochrome C to cytosol and activation of downstream caspases and poly ADP-ribose polymerase (PARP). Furthermore, CYT-Rx20 induced mitochondrial ROS accumulation and mitochondrial dysfunction, followed by GSH downregulation. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In nude mice, CYT-Rx20 inhibited oral tumor growth accompanied by increased expression of γH2AX, GSH reductase, and cleaved-caspase-3. CONCLUSION CYT-Rx20 has the potential to be further developed into an antioral cancer drug clinically. © 2017 Wiley Periodicals, Inc. Head Neck 39: 1055-1064, 2017.
Collapse
Affiliation(s)
- Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- Division of Oral Pathology and Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Oral and Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chin Chiu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shyng-Shiou F Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|