1
|
[NLRC4 plays a regulatory role in F. nucleatum-induced pyroptosis in macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1560-1565. [PMID: 36329592 PMCID: PMC9637494 DOI: 10.12122/j.issn.1673-4254.2022.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the mechanism of F.nucleatum-induced pyroptosis in macrophages and the regulatory role of inflammasomes. METHODS Lactate dehydrogenase (LDH) cytotoxicity assay and Hoechst 33342/PI double fluorescence staining were used to analyze cytolysis in F.nucleatum-infected macrophage RAW264.7 cells.The expressions of pyroptosis-related proteins caspase-1, GSDMD and IL-1β were determined using Western blotting.Inflammasome activation in the cells was analyzed by detecting the mRNA expressions of NLRP3, NLRC4, AIM2, and NLRP1 with qRT-PCR.RNA interference technique was used to knock down the key molecules involved in pyroptosis regulation in the macrophages, and the pyroptosis and necrosis rates of the cells following F.nucleatum infection were examined. RESULTS The results of LDH cytotoxicity assay and double-fluorescence staining showed that F.nucleatum infection caused swelling and lytic cell death in RAW264.7 cells.F.nucleatum infection resulted in the activation of caspase-1 and GSDMD and upregulated IL-1β expression in a multiplicity of infection (MOI)-and time-dependent manner (P < 0.05).qRT-PCR revealed significantly increased expression of NLRC4 mRNA in the macrophages after F.nucleatum infection (P < 0.05).NLRC4 silencing by siRNA strongly inhibited the activation of caspase-1/GSDMD pathway and reduced cell death (P < 0.05) and IL-1β expression in F.nucleatum-infected cells. CONCLUSION NLRC4 inflammasome drives caspase-1/GSDMD-mediated pyroptosis and inflammatory signaling in F.nucleatum-infected macrophages, suggesting the potential of NLRC4 inflammasome as a therapeutic target for F.nucleatum infections.
Collapse
|
2
|
Bai L, Wang YL, Chen YL, Li HX, Zhu SW, Liu Y, Song ZC, Duan SZ. The combination of experimental periodontitis and oral microbiota from periodontitis patients aggravates liver fibrosis in mice. J Clin Periodontol 2022; 49:1067-1078. [PMID: 35713233 DOI: 10.1111/jcpe.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
AIM Periodontitis (PD) is the sixth most prevalent disease around the world and is involved in the development and progression of multiple systemic diseases. Previous studies have reported that PD may aggravate liver injuries. The objective of this study was to investigate whether and how PD affects liver fibrosis. MATERIALS AND METHODS Ligature-induced PD (LIP) was induced in male C57/B6J mice, and sub-gingival plaques (PL) from patients with PD were applied to mouse teeth. Liver fibrosis was induced by carbon tetrachloride (CCl4 ) injection. The mice were randomly divided into six groups: Oil, Oil+LIP, Oil+LIP+PL, CCl4 , CCl4 +LIP, and CCl4 +LIP+PL. Alveolar bone resorption was evaluated by methylene blue staining. Hepatic function was analysed by serum alanine aminotransferase and hepatic hydroxyproline. Picrosirius red and α-smooth muscle actin (SMA) staining were used to evaluate the fibrotic area. RNA sequencing and quantitative RT-PCR were used to measure gene expression. Western blotting was used to measure protein levels. Flow cytometry was used to analyse the accumulation of immune cells. Mouse microbiota were analysed using 16S rRNA gene sequencing. RESULTS Mice in the CCl4 +LIP+PL group displayed higher serum alanine aminotransferase and hepatic hydroxyproline as well as more Picrosirius red-positive and α-SMA-positive areas in liver samples than those of the CCl4 group, suggesting that PD (LIP+PL) aggravated CCl4 -induced hepatic dysfunction and liver fibrosis. Consistently, the expression of fibro-genic genes and the protein levels of transforming growth factor β were much higher in the CCl4 +LIP+PL group than in the CCl4 group. Flow cytometry revealed that PD increased the accumulation of immune cells, including Kupffer cells, B cells, and Th17 cells, in the liver of mice with CCl4 treatment. PD also increased the expression of inflammatory genes and activated pro-inflammatory nuclear factor-kappa B pathway in the livers of CCl4 -injected mice. Moreover, PD altered both oral and liver microbiota in CCl4 -injected mice. CONCLUSIONS PD aggravates CCl4 -induced hepatic dysfunction and fibrosis in mice, likely through the increase of inflammation and alteration of microbiota in the liver.
Collapse
Affiliation(s)
- Lan Bai
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yan-Lin Chen
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu-Xiao Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shi-Wei Zhu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhong-Chen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Sheng-Zhong Duan
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
3
|
Rao S, Xiang J, Huang J, Zhang S, Zhang M, Sun H, Li J. PRC1 promotes GLI1-dependent osteopontin expression in association with the Wnt/β-catenin signaling pathway and aggravates liver fibrosis. Cell Biosci 2019; 9:100. [PMID: 31867100 PMCID: PMC6916466 DOI: 10.1186/s13578-019-0363-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background PRC1 (Protein regulator of cytokinesis 1) regulates microtubules organization and functions as a novel regulator in Wnt/β-catenin signaling pathway. Wnt/β-catenin is involved in development of liver fibrosis (LF). We aim to investigate effect and mechanism of PRC1 on liver fibrosis. Methods Carbon tetrachloride (CCl4)-induced mice LF model was established and in vitro cell model for LF was induced by mice primary hepatic stellate cell (HSC) under glucose treatment. The expression of PRC1 in mice and cell LF models was examined by qRT-PCR (quantitative real-time polymerase chain reaction), western blot and immunohistochemistry. MTT assay was used to detect cell viability, and western blot to determine the underlying mechanism. The effect of PRC1 on liver pathology was examined via measurement of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and hydroxyproline, as well as histopathological analysis. Results PRC1 was up-regulated in CCl4-induced mice LF model and activated HSC. Knockdown of PRC1 inhibited cell viability and promoted cell apoptosis of activated HSC. PRC1 expression was regulated by Wnt3a signaling, and PRC1 could regulate downstream β-catenin activation. Moreover, PRC1 could activate glioma-associated oncogene homolog 1 (GLI1)-dependent osteopontin expression to participate in LF. Adenovirus-mediated knockdown of PRC1 in liver attenuated LF and reduced collagen deposition. Conclusions PRC1 aggravated LF through regulating Wnt/β-catenin mediated GLI1-dependent osteopontin expression, providing a new potential therapeutic target for LF treatment.
Collapse
Affiliation(s)
- Shenzong Rao
- 1Department of Transfusion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jie Xiang
- Department of Laboratory Medicine, Wuhan Medical Treatment Center, Wuhan City, 430023 Hubei Province China
| | - Jingsong Huang
- 3Department of Transfusion, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, No. 2000 Xiangan Eastroad, Xiangan District, Xiamen, 361101 China
| | - Shangang Zhang
- 4Department of Rehabilitation Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, No. 2000 Xiangan Eastroad, Xiangan District, Xiamen, 361101 China
| | - Min Zhang
- 1Department of Transfusion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Haoran Sun
- 1Department of Transfusion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jian Li
- 1Department of Transfusion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|