1
|
Pandey M, Vardi-Naim H, Kronfeld-Schor N, Berger-Tal O. The foraging behavior of gerbils reveals the ecological significance of crude oil pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125317. [PMID: 39549991 DOI: 10.1016/j.envpol.2024.125317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Despite extensive ecotoxicological evidence on the adverse effects of oil pollution on rodents, little is known about how rodents make decisions in oil-polluted environments (i.e., outside of lab settings). We investigated the foraging behavior of Allenby gerbils, Gerbillus andersoni allenbyi (GA), that were presented with feeding trays in a semi-natural environment. The trays contained seeds mixed into one of three types of soils - clean soil, and two different soil samples collected from two well-documented terrestrial oil spill sites in Israel. The oil spill disasters occurred in 1975 and 2014 and the spill sites are located within a few hundred meters of each other, in the 'Avrona Nature Reserve in the Arava hyper-arid region in Israel. Gerbils of both sexes avoided foraging in 2014-polluted soil, but surprisingly, they foraged more in 1975-polluted soil. Our results indicate that for the GA, the 1975-polluted soil is an advantageous substrate to forage on, probably because its texture facilitates more efficient foraging, leading to greater energetic gain, and creating a trade-off between energetic gain and perceived foraging cost due to its pollution. We also proceeded to investigate some physiological consequences of chronic exposure to the 2014-polluted soil in the laboratory. Chronic oil exposure did not lead to mortality or weight loss, but female gerbils exhibited heightened cortisol. We conclude that terrestrial oil pollution may have significant sublethal impacts on animal behavior, even when there is no obvious short-term physiological cost to the exposure.
Collapse
Affiliation(s)
- Malay Pandey
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 849900, Midreshet Ben-Gurion, Israel; Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 849900, Midreshet Ben-Gurion, Israel.
| | | | | | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 849900, Midreshet Ben-Gurion, Israel
| |
Collapse
|
2
|
Gan L, Zhang S, Zeng R, Shen T, Tian L, Yu H, Hua K, Wang Y. Impact of Personality Trait Interactions on Foraging and Growth in Native and Invasive Turtles. Animals (Basel) 2024; 14:2240. [PMID: 39123765 PMCID: PMC11311056 DOI: 10.3390/ani14152240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Animal personalities play a crucial role in invasion dynamics. During the invasion process, the behavioral strategies of native species vary among personalities, just as the invasive species exhibit variations in behavior strategies across personalities. However, the impact of personality interactions between native species and invasive species on behavior and growth are rarely illustrated. The red-eared slider turtle (Trachemys scripta elegans) is one of the worst invasive species in the world, threatening the ecology and fitness of many freshwater turtles globally. The Chinese pond turtle (Mauremys reevesii) is one of the freshwater turtles most threatened by T. scripta elegans in China. In this study, we used T. scripta elegans and M. reevesii to investigate how the personality combinations of native and invasive turtles would impact the foraging strategy and growth of both species during the invasion process. We found that M. reevesii exhibited bolder and more exploratory personalities than T. scripta elegans. The foraging strategy of M. reevesii was mainly affected by the personality of T. scripta elegans, while the foraging strategy of T. scripta elegans was influenced by both their own personality and personalities of M. reevesii. Additionally, we did not find that the personality combination would affect the growth of either T. scripta elegans or M. reevesii. Differences in foraging strategy may be due to the dominance of invasive species and variations in the superficial exploration and thorough exploitation foraging strategies related to personalities. The lack of difference in growth may be due to the energy allocation trade-offs between personalities or be masked by the slow growth rate of turtles. Overall, our results reveal the mechanisms of personality interaction effects on the short-term foraging strategies of both native and invasive species during the invasion process. They provide empirical evidence to understand the effects of personality on invasion dynamics, which is beneficial for enhancing comprehension understanding of the personality effects on ecological interactions and invasion biology.
Collapse
Affiliation(s)
- Lin Gan
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Shufang Zhang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Ruyi Zeng
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Tianyi Shen
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Liu Tian
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Hao Yu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Ke Hua
- Center of Reproductive Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Ord TJ. Costs of territoriality: a review of hypotheses, meta-analysis, and field study. Oecologia 2021; 197:615-631. [PMID: 34716493 DOI: 10.1007/s00442-021-05068-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
The evolution of territoriality reflects the balance between the benefit and cost of monopolising a resource. While the benefit of territoriality is generally intuitive (improved access to resources), our understanding of its cost is less clear. This paper combines: 1. a review of hypotheses and meta-analytic benchmarking of costs across diverse taxa; and 2. a new empirical test of hypotheses using a longitudinal study of free-living male territorial lizards. The cost of territoriality was best described as a culmination of multiple factors, but especially costs resulting from the time required to maintain a territory (identified by the meta-analysis) or those exacerbated by a territory that is large in size (identified by the empirical test). The meta-analysis showed that physiological costs such as energetic expenditure or stress were largely negligible in impact on territory holders. Species that used territories to monopolise access to mates appeared to incur the greatest costs, whereas those defending food resources experienced the least. The single largest gap in our current understanding revealed by the literature review is the potential cost associated with increased predation. There is also a clear need for multiple costs to be evaluated concurrently in a single species. The empirical component of this study showcases a powerful analytical framework for evaluating a range of hypotheses using correlational data obtained in the field. More broadly, this paper highlights key factors that should be considered in any investigation that attempts to account for the evolutionary origin or ecological variation in territorial behaviour within and between species.
Collapse
Affiliation(s)
- Terry J Ord
- Evolution and Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
4
|
Li LL, Plotnik JM, Xia SW, Meaux E, Quan RC. Cooperating elephants mitigate competition until the stakes get too high. PLoS Biol 2021; 19:e3001391. [PMID: 34582437 PMCID: PMC8478180 DOI: 10.1371/journal.pbio.3001391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/15/2021] [Indexed: 12/05/2022] Open
Abstract
Cooperation is ubiquitous in the animal kingdom as it aims to maximize benefits through joint action. Selection, however, may also favor competitive behaviors that could violate cooperation. How animals mitigate competition is hotly debated, with particular interest in primates and little attention paid thus far to nonprimates. Using a loose-string pulling apparatus, we explored cooperative and competitive behavior, as well as mitigation of the latter, in semi-wild Asian elephants (Elephas maximus). Our results showed that elephants first maintained a very high cooperation rate (average = 80.8% across 45 sessions). Elephants applied “block,” “fight back,” “leave,” “move side,” and “submission” as mitigation strategies and adjusted these strategies according to their affiliation and rank difference with competition initiators. They usually applied a “fight back” mitigation strategy as a sanction when competition initiators were low ranking or when they had a close affiliation, but were submissive if the initiators were high ranking or when they were not closely affiliated. However, when the food reward was limited, the costly competitive behaviors (“monopoly” and “fight”) increased significantly, leading to a rapid breakdown in cooperation. The instability of elephant cooperation as a result of benefit reduction mirrors that of human society, suggesting that similar fundamental principles may underlie the evolution of cooperation across species. This study shows that in a task requiring coordinated pulling, elephants compete for access to food but work to mitigate competition in order to maintain cooperation. If the cost of competition becomes too high, however, cooperation breaks down entirely. This behavior mirrors that seen in humans and other great apes, suggesting that certain cooperative mechanisms are not unique to primates.
Collapse
Affiliation(s)
- Li-Li Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China and Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| | - Joshua M. Plotnik
- Department of Psychology, Hunter College, City University of New York, New York, New York, United States of America
- Department of Psychology, The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail: (JMP); (R-CQ)
| | - Shang-Wen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Estelle Meaux
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Rui-Chang Quan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China and Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
- * E-mail: (JMP); (R-CQ)
| |
Collapse
|
5
|
Makin DF, Kotler BP. How do Allenby’s gerbils titrate risk and reward in response to different predators? Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2785-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Makin DF, Kotler BP. Does intraspecific competition among Allenby's gerbils lead to an Ideal Free Distribution across foraging patches? Behav Processes 2019; 167:103922. [PMID: 31377380 DOI: 10.1016/j.beproc.2019.103922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Employing the Ideal Free Distribution (IFD) principle as a tool, we investigated how Allenby's gerbils (Gerbillus andersoni allenbyi) utilized food patches within and moved between connected quadrants (i.e., 'habitats') in a large outdoor semi-natural enclosure. These habitats differed in initial forager densities, but provided equal numbers of standardized food patches that provided equal rewards (i.e. food) and costs (i.e. predation risk, metabolic, and missed opportunity). We quantified the gerbils' giving-up-densities (GUDs) within foraging patches and recorded their daily distribution between habitats. Individual gerbils were tagged with unique bar-coded numbers to compare their locations within and across habitats. The mean number of gerbil foragers (9.1 and 8.9 individuals, respectively) and GUDs evened out across habitats over time. Despite this, the distribution of gerbils did not remain static within foraging patches; instead, gerbils altered their use of patches across and within habitats on a nightly basis. This may be due to a combination of factors including, high levels of interference competition between foragers at patches, a lag effect before the gerbils perceived changes in competition intensity with the arrival and departure of individuals, and gerbils having imperfect knowledge of their environment. Furthermore, the pattern of microhabitat (open vs bush patches) use by gerbils differed over time, indicating that despite the distribution of gerbils and their GUDs evening out between habitats, they still preferred foraging from safer bush patches over riskier open patches. This study provides insights into how under low predation risk, strong levels of intraspecific competition can shape the distribution of foragers across and within habitats.
Collapse
Affiliation(s)
- Douglas F Makin
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel.
| | - Burt P Kotler
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel.
| |
Collapse
|
7
|
Cozzoli F, Gjoni V, Basset A. Size dependency of patch departure behavior: evidence from granivorous rodents. Ecology 2019; 100:e02800. [PMID: 31233618 PMCID: PMC6852180 DOI: 10.1002/ecy.2800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/04/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023]
Abstract
Individual size is a major determinant of mobile organisms’ ecology and behavior. This study aims to explore whether allometric scaling principles can provide an underlying framework for general patterns of resource patch use. To this end, we used giving‐up densities (GUDs), that is, the amount of resources remaining in a patch after a forager has quit feeding, as a comparative measure of the amount of resources exploited by a forager of any given size. We specifically tested the hypothesis that size‐dependent responses to both internal (energy requirement) and external (risk management) forces may have an effect on GUDs. We addressed this topic by conducting an extensive meta‐analysis of published data on granivorous rodents, including 292 GUD measurements reported in 25 papers. The data set includes data on 22 granivorous rodent species belonging to three taxonomic suborders (Castorimorpha, Myomorpha, and Sciuromorpha) and spans three habitat types (desert, grassland, and forest). The observations refer to both patches subject to predation risk and safe patches. Pooling all data, we observed positive allometric scaling of GUDs with average forager size (scaling exponent = 0.45), which explained 15% of overall variance in individual GUDs. Perceived predation risk during foraging led to an increase in GUDs independently of forager size and taxonomy and of habitat type, which explained an additional 12% of overall GUD variance. The size scaling exponent of GUDs is positive across habitat types and taxonomic suborders of rodents. Some variation was observed, however. The scaling coefficients in grassland and forest habitat types were significantly higher than in the desert habitat type. In addition, Sciuromorpha and Myomorpha exhibited a more pronounced size scaling of GUDs than Castorimorpha. This suggests that different adaptive behaviors may be used in different contexts and/or from different foragers. With body size being a fundamental ecological descriptor, research into size scaling of GUDs may help to place patch‐use observations in a broader allometric framework.
Collapse
Affiliation(s)
- Francesco Cozzoli
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, 73100, Italy
| | - Vojsava Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, 73100, Italy
| | - Alberto Basset
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, 73100, Italy
| |
Collapse
|
8
|
Kelt DA, Heske EJ, Lambin X, Oli MK, Orrock JL, Ozgul A, Pauli JN, Prugh LR, Sollmann R, Sommer S. Advances in population ecology and species interactions in mammals. J Mammal 2019. [DOI: 10.1093/jmammal/gyz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe study of mammals has promoted the development and testing of many ideas in contemporary ecology. Here we address recent developments in foraging and habitat selection, source–sink dynamics, competition (both within and between species), population cycles, predation (including apparent competition), mutualism, and biological invasions. Because mammals are appealing to the public, ecological insight gleaned from the study of mammals has disproportionate potential in educating the public about ecological principles and their application to wise management. Mammals have been central to many computational and statistical developments in recent years, including refinements to traditional approaches and metrics (e.g., capture-recapture) as well as advancements of novel and developing fields (e.g., spatial capture-recapture, occupancy modeling, integrated population models). The study of mammals also poses challenges in terms of fully characterizing dynamics in natural conditions. Ongoing climate change threatens to affect global ecosystems, and mammals provide visible and charismatic subjects for research on local and regional effects of such change as well as predictive modeling of the long-term effects on ecosystem function and stability. Although much remains to be done, the population ecology of mammals continues to be a vibrant and rapidly developing field. We anticipate that the next quarter century will prove as exciting and productive for the study of mammals as has the recent one.
Collapse
Affiliation(s)
- Douglas A Kelt
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Edward J Heske
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Bleicher SS, Kotler BP, Shalev O, Dixon A, Embar K, Brown JS. Divergent behavior amid convergent evolution: A case of four desert rodents learning to respond to known and novel vipers. PLoS One 2018; 13:e0200672. [PMID: 30125293 PMCID: PMC6101362 DOI: 10.1371/journal.pone.0200672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/05/2022] Open
Abstract
Desert communities world-wide are used as natural laboratories for the study of convergent evolution, yet inferences drawn from such studies are necessarily indirect. Here, we brought desert organisms together (rodents and vipers) from two deserts (Mojave and Negev). Both predators and prey in the Mojave have adaptations that give them competitive advantage compared to their middle-eastern counterparts. Heteromyid rodents of the Mojave, kangaroo rats and pocket mice, have fur-lined cheek pouches that allow them to carry larger loads of seeds under predation risk compared to gerbilline rodents of the Negev Deserts. Sidewinder rattlesnakes have heat-sensing pits, allowing them to hunt better on moonless nights when their Negev sidewinding counterpart, the Saharan horned vipers, are visually impaired. In behavioral-assays, we used giving-up density (GUD) to gauge how each species of rodent perceived risk posed by known and novel snakes. We repeated this for the same set of rodents at first encounter and again two months later following intensive "natural" exposure to both snake species. Pre-exposure, all rodents identified their evolutionarily familiar snake as a greater risk than the novel one. However, post-exposure all identified the heat-sensing sidewinder rattlesnake as a greater risk. The heteromyids were more likely to avoid encounters with, and discern the behavioral difference among, snakes than their gerbilline counterparts.
Collapse
Affiliation(s)
- Sonny Shlomo Bleicher
- Tumamoc People and Habitat, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States of America
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Burt P. Kotler
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Omri Shalev
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Austin Dixon
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Keren Embar
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Joel S. Brown
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Integrated Mathematical Oncology, Moffitt Cancer Research Center, Tampa, FL, United States of America
| |
Collapse
|
10
|
Biogeographic differences between native and non-native populations of crayfish alter species coexistence and trophic interactions in mesocosms. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1788-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Bleicher SS. The landscape of fear conceptual framework: definition and review of current applications and misuses. PeerJ 2017; 5:e3772. [PMID: 28929015 PMCID: PMC5600181 DOI: 10.7717/peerj.3772] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
Landscapes of Fear (LOF), the spatially explicit distribution of perceived predation risk as seen by a population, is increasingly cited in ecological literature and has become a frequently used "buzz-word". With the increase in popularity, it became necessary to clarify the definition for the term, suggest boundaries and propose a common framework for its use. The LOF, as a progeny of the "ecology of fear" conceptual framework, defines fear as the strategic manifestation of the cost-benefit analysis of food and safety tradeoffs. In addition to direct predation risk, the LOF is affected by individuals' energetic-state, inter- and intra-specific competition and is constrained by the evolutionary history of each species. Herein, based on current applications of the LOF conceptual framework, I suggest the future research in this framework will be directed towards: (1) finding applied management uses as a trait defining a population's habitat-use and habitat-suitability; (2) studying multi-dimensional distribution of risk-assessment through time and space; (3) studying variability between individuals within a population; (4) measuring eco-neurological implications of risk as a feature of environmental heterogeneity and (5) expanding temporal and spatial scales of empirical studies.
Collapse
Affiliation(s)
- Sonny S. Bleicher
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States of America
- Tumamoc People and Habitat, Tumamoc Desert Research Laboratory, University of Arizona, United States of America
| |
Collapse
|
12
|
Shuai LY, Zhang ZR, Zeng ZG. When should I be aggressive? A state-dependent foraging game between competitors. Behav Ecol 2016. [DOI: 10.1093/beheco/arw169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Foraging in groups affects giving-up densities: solo foragers quit sooner. Oecologia 2015; 178:707-13. [DOI: 10.1007/s00442-015-3274-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/16/2015] [Indexed: 11/25/2022]
|