1
|
Vidal AC, Moylan CA, Wilder J, Grant DJ, Murphy SK, Hoyo C. Racial disparities in liver cancer: Evidence for a role of environmental contaminants and the epigenome. Front Oncol 2022; 12:959852. [PMID: 36072796 PMCID: PMC9441658 DOI: 10.3389/fonc.2022.959852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
Liver cancer incidence has tripled since the early 1980s, making this disease one of the fastest rising types of cancer and the third leading cause of cancer-related deaths worldwide. In the US, incidence varies by geographic location and race, with the highest incidence in the southwestern and southeastern states and among racial minorities such as Hispanic and Black individuals. Prognosis is also poorer among these populations. The observed ethnic disparities do not fully reflect differences in the prevalence of risk factors, e.g., for cirrhosis that may progress to liver cancer or from genetic predisposition. Likely substantial contributors to risk are environmental factors, including chemical and non-chemical stressors; yet, the paucity of mechanistic insights impedes prevention efforts. Here, we review the current literature and evaluate challenges to reducing liver cancer disparities. We also discuss the hypothesis that epigenetic mediators may provide biomarkers for early detection to support interventions that reduce disparities.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Cynthia A. Moylan
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Julius Wilder
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Delores J. Grant
- Department of Biomedical and Biological Sciences, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Research, School of Medicine, Duke University, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
2
|
Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14020399. [PMID: 35057580 PMCID: PMC8778943 DOI: 10.3390/nu14020399] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of the present research was to review the state of the art on the consequences of drinking coffee at the different levels of the gastrointestinal tract. At some steps of the digestive process, the effects of coffee consumption seem rather clear. This is the case for the stimulation of gastric acid secretion, the stimulation of biliary and pancreatic secretion, the reduction of gallstone risk, the stimulation of colic motility, and changes in the composition of gut microbiota. Other aspects are still controversial, such as the possibility for coffee to affect gastro-esophageal reflux, peptic ulcers, and intestinal inflammatory diseases. This review also includes a brief summary on the lack of association between coffee consumption and cancer of the different digestive organs, and points to the powerful protective effect of coffee against the risk of hepatocellular carcinoma. This review reports the available evidence on different topics and identifies the areas that would most benefit from additional studies.
Collapse
|
3
|
Association between Coffee Consumption/Physical Exercise and Gastric, Hepatic, Colon, Breast, Uterine Cervix, Lung, Thyroid, Prostate, and Bladder Cancer. Nutrients 2021; 13:nu13113927. [PMID: 34836181 PMCID: PMC8620757 DOI: 10.3390/nu13113927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Although the effects of coffee consumption and physical exercise on the risk of cancer have been suggested, their interactions have not been investigated. The present cross-sectional study aimed to investigate the correlation of coffee consumption and physical exercise with cancer. Participants ≥40 years old in the Korean Genome and Epidemiology Study 2004–2016 were included (n = 162,220). Histories of gastric cancer, hepatic cancer, colon cancer, breast cancer, uterine cervix cancer, lung cancer, thyroid cancer, prostate cancer, and bladder cancer were analyzed according to the coffee consumption groups using logistic regression models. The odds among individuals in the >60 cups/month coffee group were lower for gastric cancer (adjusted odds ratio (aOR) = 0.80 (95% confidence intervals = 0.65–0.98)), hepatic cancer (0.32 (0.18–0.58)), colon cancer (0.53 (0.39–0.72)), breast cancer (0.56 (0.45–0.70)), and thyroid cancer (0.71 (0.59–0.85)) than for individuals in the no coffee group. Physical exercise of ≥150 min/week was correlated with higher odds for gastric cancer (1.18 (1.03–1.36)), colon cancer (1.52 (1.26–1.83)), breast cancer (1.53 (1.35–1.74)), thyroid cancer (1.42 (1.27–1.59)), and prostate cancer (1.61 (1.13–2.28)) compared to no exercise. Coffee consumption and physical exercise showed an interaction in thyroid cancer (p = 0.002). Coffee consumption was related to a decreased risk of gastric cancer, hepatic cancer, colon cancer, breast cancer, and thyroid cancer in the adult population. Physical exercise was positively correlated with gastric cancer, colon cancer, breast cancer, thyroid cancer, and prostate cancer.
Collapse
|
4
|
A Decade of Research on Coffee as an Anticarcinogenic Beverage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4420479. [PMID: 34567408 PMCID: PMC8460369 DOI: 10.1155/2021/4420479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/08/2023]
Abstract
Coffee consumption has been investigated as a protective factor against cancer. Coffee is a complex beverage that contains more than 1000 described phytochemicals, which are responsible for its pleasant taste, aroma, and health-promoting properties. Many of these compounds have a potential therapeutic effect due to their antioxidant, anti-inflammatory, antifibrotic, and anticancer properties. The roasting process affects the phytochemical content, and undesirable compounds may be formed. In recent years, there have been contradictory publications regarding the effect of coffee drinking and cancer. Therefore, this study is aimed at evaluating the association of coffee consumption with the development of cancer. In PubMed, until July 2021, the terms “Coffee and cancer” resulted in about 2150 publications, and almost 50% of them have been published in the last 10 years. In general, studies published in recent years have shown negative associations between coffee consumption and the risk or development of different types of cancer, including breast, prostate, oral, oral and pharyngeal, melanoma, skin and skin nonmelanoma, kidney, gastric, colorectal, endometrial, liver, leukemic and hepatocellular carcinoma, brain, and thyroid cancer, among others. In contrast, only a few publications demonstrated a double association between coffee consumption and bladder, pancreatic, and lung cancer. In this review, we summarize the in vitro and in vivo studies that accumulate epidemiological evidence showing a consistent inverse association between coffee consumption and cancer.
Collapse
|
5
|
Sojoodi M, Wei L, Erstad DJ, Yamada S, Fujii T, Hirschfield H, Kim RS, Lauwers GY, Lanuti M, Hoshida Y, Tanabe KK, Fuchs BC. Epigallocatechin Gallate Induces Hepatic Stellate Cell Senescence and Attenuates Development of Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2020; 13:497-508. [PMID: 32253266 DOI: 10.1158/1940-6207.capr-19-0383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly morbid condition with lack of effective treatment options. HCC arises from chronically inflamed and damaged liver tissue; therefore, chemoprevention may be a useful strategy to reduce HCC incidence. Several reports suggest that epigallocatechin gallate (EGCG), extracted from green tea, can suppress liver inflammation and fibrosis in animal models, but its role in HCC chemoprevention is not well established. In this study, male Wistar rats were injected with diethylnitrosamine at 50 mg/kg for 18 weeks to induce cirrhosis and HCC, and EGCG was given in drinking water at a concentration of 0.02%. Clinically achievable dosing of EGCG was well-tolerated in diethylnitrosamine-injured rats and was associated with improved serum liver markers including alanine transaminase, aspartate transaminase, and total bilirubin, and reduced HCC tumor formation. Transcriptomic analysis of diethylnitrosamine-injured hepatic tissue was notable for increased expression of genes associated with the Hoshida high risk HCC gene signature, which was prevented with EGCG treatment. EGCG treatment also inhibited fibrosis progression, which was associated with inactivation of hepatic stellate cells and induction of the senescence-associated secretory phenotype. In conclusion, EGCG administered at clinically safe doses exhibited both chemopreventive and antifibrotic effects in a rat diethylnitrosamine liver injury model.
Collapse
Affiliation(s)
- Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Derek J Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Suguru Yamada
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Tsutomu Fujii
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rosa S Kim
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gregory Y Lauwers
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|