1
|
Corritore E, Lee YS, Sokal EM, Lysy PA. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Ther Adv Endocrinol Metab 2016; 7:182-99. [PMID: 27540464 PMCID: PMC4973405 DOI: 10.1177/2042018816652059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies.
Collapse
Affiliation(s)
- Elisa Corritore
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M. Sokal
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
2
|
Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis. Biosci Rep 2016; 36:BSR20150259. [PMID: 26987985 PMCID: PMC4859086 DOI: 10.1042/bsr20150259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/22/2016] [Indexed: 01/22/2023] Open
Abstract
In vitro cultured pancreatic acinar cells rapidly differentiate. Low temperature exposure prevents this process and improves the efficiency of acinar cell labelling with adenovirus vectors. This may help in tracing β-cell neogenesis from human pancreatic acinar cells. The regenerative medicine field is expanding with great successes in laboratory and preclinical settings. Pancreatic acinar cells in diabetic mice were recently converted into β-cells by treatment with ciliary neurotrophic factor (CNTF) and epidermal growth factor (EGF). This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly lose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of β-cell neogenesis. We found that culture at low temperature (4°C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37°C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37°C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labelling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-β-cell transdifferentiation.
Collapse
|
3
|
Wei R, Hong T. Lineage Reprogramming: A Promising Road for Pancreatic β Cell Regeneration. Trends Endocrinol Metab 2016; 27:163-176. [PMID: 26811208 DOI: 10.1016/j.tem.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/18/2022]
Abstract
Cell replacement therapy is a promising method to restore pancreatic β cell function and cure diabetes. Distantly related cells (fibroblasts, keratinocytes, and muscle cells) and developmentally related cells (hepatocytes, gastrointestinal, and pancreatic exocrine cells) have been successfully reprogrammed into β cells in vitro and in vivo. However, while some reprogrammed β cells bear similarities to bona fide β cells, others do not develop into fully functional β cells. Here we review various strategies currently used for β cell reprogramming, including ectopic expression of specific transcription factors associated with islet development, repression of maintenance factors of host cells, regulation of epigenetic modifications, and microenvironmental changes. Development of simple and efficient reprogramming methods is a key priority for developing fully functional β cells suitable for cell replacement therapy.
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
4
|
Xiao X, Fischbach S, Fusco J, Zimmerman R, Song Z, Nebres P, Ricks DM, Prasadan K, Shiota C, Husain SZ, Gittes GK. PNA lectin for purifying mouse acinar cells from the inflamed pancreas. Sci Rep 2016; 6:21127. [PMID: 26884345 PMCID: PMC4756371 DOI: 10.1038/srep21127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Shane Fischbach
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Joseph Fusco
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Ray Zimmerman
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Zewen Song
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Philip Nebres
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - David Matthew Ricks
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - Sohail Z. Husain
- Division of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| | - George K. Gittes
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA15224, USA
| |
Collapse
|
5
|
Affiliation(s)
- Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
6
|
Lanzoni G, Oikawa T, Wang Y, Cui CB, Carpino G, Cardinale V, Gerber D, Gabriel M, Dominguez-Bendala J, Furth ME, Gaudio E, Alvaro D, Inverardi L, Reid LM. Concise review: clinical programs of stem cell therapies for liver and pancreas. Stem Cells 2013; 31:2047-60. [PMID: 23873634 PMCID: PMC3812254 DOI: 10.1002/stem.1457] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022]
Abstract
Regenerative medicine is transitioning into clinical programs using stem/progenitor cell therapies for repair of damaged organs. We summarize those for liver and pancreas, organs that share endodermal stem cell populations, biliary tree stem cells (hBTSCs), located in peribiliary glands. They are precursors to hepatic stem/progenitors in canals of Hering and to committed progenitors in pancreatic duct glands. They give rise to maturational lineages along a radial axis within bile duct walls and a proximal-to-distal axis starting at the duodenum and ending with mature cells in the liver or pancreas. Clinical trials have been ongoing for years assessing effects of determined stem cells (fetal-liver-derived hepatic stem/progenitors) transplanted into the hepatic artery of patients with various liver diseases. Immunosuppression was not required. Control subjects, those given standard of care for a given condition, all died within a year or deteriorated in their liver functions. Subjects transplanted with 100-150 million hepatic stem/progenitor cells had improved liver functions and survival extending for several years. Full evaluations of safety and efficacy of transplants are still in progress. Determined stem cell therapies for diabetes using hBTSCs remain to be explored but are likely to occur following ongoing preclinical studies. In addition, mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) are being used for patients with chronic liver conditions or with diabetes. MSCs have demonstrated significant effects through paracrine signaling of trophic and immunomodulatory factors, and there is limited evidence for inefficient lineage restriction into mature parenchymal or islet cells. HSCs' effects are primarily via modulation of immune mechanisms.
Collapse
Affiliation(s)
- Giacomo Lanzoni
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL. 33136
- Department of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Tsunekazu Oikawa
- Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Yunfang Wang
- The Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, PR China, 100850
| | - Cai-Bin Cui
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Guido Carpino
- Department of Health Sciences, University of Rome “ForoItalico”, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - Vincenzo Cardinale
- Department of Scienze e Biotecnologie Medico-Chirurgiche, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - David Gerber
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Mara Gabriel
- MGabriel Consulting, 3621 Sweeten Creek Road, Chapel Hill, NC 27514
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL. 33136
| | - Mark E. Furth
- Wake Forest Innovations, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - Domenico Alvaro
- Department of Scienze e Biotecnologie Medico-Chirurgiche, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - Luca Inverardi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL. 33136
| | - Lola M. Reid
- Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol 2013; 9:598-606. [PMID: 23877422 DOI: 10.1038/nrendo.2013.145] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endocrine pancreas represents an interesting arena for regenerative medicine and cell therapeutics. One of the major pancreatic diseases, diabetes mellitus is a metabolic disorder caused by having an insufficient number of insulin-producing β cells. Replenishment of β cells by cell transplantation can restore normal metabolic control. The shortage in donor pancreata has meant that the demand for transplantable β cells has outstripped the supply, which could be met by using alternative sources of stem cells. This situation has opened up new areas of research, such as cellular reprogramming and in vivo β-cell regeneration. Pluripotent stem cells seem to be the best option for clinical applications of β-cell regeneration in the near future, as these cells have been demonstrated to represent an unlimited source of functional β cells. Although compelling evidence shows that the adult pancreas retains regenerative capacity, it remains unclear whether this organ contains stem cells. Alternatively, specialized cell types within or outside the pancreas retain plasticity in proliferation and differentiation. Cellular reprogramming or transdifferentiation of exocrine cells or other types of endocrine cells in the pancreas could provide a long-term solution.
Collapse
Affiliation(s)
- Luc Bouwens
- Cell Differentiation Unit, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels B-1090, Belgium
| | | | | |
Collapse
|
8
|
Mfopou JK, Bouwens L. [Differentiation of pluripotent stem cells into pancreatic lineages]. Med Sci (Paris) 2013; 29:736-43. [PMID: 24005628 DOI: 10.1051/medsci/2013298012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diabetes mellitus is the leading metabolic disease and represents a major public health concern worldwide. Whereas the transplantation of pancreas donor-derived islets significantly improves the quality of life of diabetic patients who become insulin independent for few years, it can unfortunately be provided only to few patients in an advanced stage of the disease. This situation is related to the severe shortage in pancreas donors and has prompted the hunt for alternative sources of islet cells. Beside many other strategies aiming at producing new beta cells in vitro or in vivo, a particular focus has been on the plupiropent stem cells because of their abundant availability and their extreme plasticity. Progress in understanding small vertebrates embryonic development has tremendously contributed to the design of differentiation strategies applied to pluripotent stem cells. Nowadays, definitive endoderm and pancreatic progenitors can be efficiently induced from human embryonic stem cells and from human induced pluripotent stem cells. Although we are still lacking the knowledge required for deriving functional beta cells in vitro, transplantation experiments have demonstrated that stem cell-derived pancreas progenitors further generate this phenotype in vivo. All these findings gathered during the last decade witness the closer clinical application of pluripotent stem cell progenies in diabetes cell therapy.
Collapse
Affiliation(s)
- Josué Kunjom Mfopou
- Unité de différenciation cellulaire, Centre de recherche sur le diabète, Vrije Universiteit Brussel, Bruxelles, Belgique.
| | | |
Collapse
|
9
|
Hindriksen S, Bijlsma MF. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors. Cancers (Basel) 2012; 4:989-1035. [PMID: 24213498 PMCID: PMC3712732 DOI: 10.3390/cancers4040989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
10
|
Abstract
Continuing advances in stem cell science have prompted researchers to envisage the potential application of stem cells for the management of several debilitating disorders, thus raising the expectations of transplant clinicians. In particular, in order to find a source of adult stem cells alternative to embryonic stem cells (ESCs) for the exploration of novel strategies in regenerative medicine, researchers have attempted to identify and characterise adult stem/progenitor cells resident in compact organs, since these populations appear to be responsible for physiological tissue renewal and regeneration after injury. In particular, recent studies have also reported evidence for the existence of adult stem/progenitor cell populations in both mouse and human thyroids. Here, I provide a review of published findings about ESC lines capable of generating thyroid follicular cells, thyroid somatic stem cells and cancer stem cells within the thyroid. The three subjects are analysed by also considering the criticism recently raised against their existence and potential utility. I comment specifically on the significance of resident thyroid stem cells in the developmental biology of the gland and their putative role in the pathogenesis of thyroid disorders and on the protocols employed for their identification. I finally provide my opinion on whether from basic science results obtained to date it is possible to extrapolate any convincing basic for future treatment of thyroid disorders.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Research Laboratories, Ospedale Pediatrico Bambino Gesù Research Institute, Children's Hospital Bambino Gesù, Piazza S. Onofrio 4, Rome, Italy.
| |
Collapse
|
11
|
Chung CH, Levine F. Adult pancreatic alpha-cells: a new source of cells for beta-cell regeneration. Rev Diabet Stud 2010; 7:124-31. [PMID: 21060971 DOI: 10.1900/rds.2010.7.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beta-cell deficit is the major pathological feature in type 1 and type 2 diabetes patients, and plays a key role in disease progression. In principle, beta-cell regeneration can occur by replication of pre-existing beta-cells, or by beta-cell neogenesis from stem/progenitors. Unfortunately, beta-cell replication is limited by the almost complete absence of beta-cells in patients with type 1 diabetes, and the increasing recognition that the beta-cell replicative capacity declines severely with age. Therefore, beta-cell neogenesis has received increasing interest. Many different cell types within the pancreas have been suggested as potential beta-cell stem/progenitor cells, but the data have been conflicting. In some cases, this may be due to different regeneration models. On the other hand, different results have been obtained with similar regeneration models, leading to confusion about the nature and existence of beta-cell neogenesis in adult animals. Here, we review the major candidates for adult regeneration pathways, and focus on the recent discovery that alpha-cells can function as a novel beta-cell progenitor. Of note, this is a pathway that appears to be unique to beta-cell neogenesis in the adult, as the embryonic pathway of beta-cell neogenesis does not proceed through a glucagon-positive intermediate. We conclude that beta-cell neogenesis from alpha-cells is a new pathway of potential therapeutic significance, making it of high importance to elucidate the molecular events in alpha- to beta-cell conversion.
Collapse
Affiliation(s)
- Cheng-Ho Chung
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute 10901 N. Torrey Pines Road, CA 92037, USA
| | | |
Collapse
|