1
|
Li Y, Frei AW, Labrada IM, Rong Y, Liang JP, Samojlik MM, Sun C, Barash S, Keselowsky BG, Bayer AL, Stabler CL. Immunosuppressive PLGA TGF-β1 Microparticles Induce Polyclonal and Antigen-Specific Regulatory T Cells for Local Immunomodulation of Allogeneic Islet Transplants. Front Immunol 2021; 12:653088. [PMID: 34122410 PMCID: PMC8190479 DOI: 10.3389/fimmu.2021.653088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 01/27/2023] Open
Abstract
Allogeneic islet transplantation is a promising cell-based therapy for Type 1 Diabetes (T1D). The long-term efficacy of this approach, however, is impaired by allorejection. Current clinical practice relies on long-term systemic immunosuppression, leading to severe adverse events. To avoid these detrimental effects, poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) were engineered for the localized and controlled release of immunomodulatory TGF-β1. The in vitro co-incubation of TGF-β1 releasing PLGA MPs with naïve CD4+ T cells resulted in the efficient generation of both polyclonal and antigen-specific induced regulatory T cells (iTregs) with robust immunosuppressive function. The co-transplantation of TGF-β1 releasing PLGA MPs and Balb/c mouse islets within the extrahepatic epididymal fat pad (EFP) of diabetic C57BL/6J mice resulted in the prompt engraftment of the allogenic implants, supporting the compatibility of PLGA MPs and local TGF-β1 release. The presence of the TGF-β1-PLGA MPs, however, did not confer significant graft protection when compared to untreated controls, despite measurement of preserved insulin expression, reduced intra-islet CD3+ cells invasion, and elevated CD3+Foxp3+ T cells at the peri-transplantation site in long-term functioning grafts. Examination of the broader impacts of TGF-β1/PLGA MPs on the host immune system implicated a localized nature of the immunomodulation with no observed systemic impacts. In summary, this approach establishes the feasibility of a local and modular microparticle delivery system for the immunomodulation of an extrahepatic implant site. This approach can be easily adapted to deliver larger doses or other agents, as well as multi-drug approaches, within the local graft microenvironment to prevent transplant rejection.
Collapse
Affiliation(s)
- Ying Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Anthony W Frei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Irayme M Labrada
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yanan Rong
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Jia-Pu Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Chuqiao Sun
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Steven Barash
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami, Miami, FL, United States.,Department of Microbiology and Immunology, University of Miami, Miami, FL, United States
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,University of Florida Diabetes Institute, Gainesville, FL, United States
| |
Collapse
|
2
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. Current advances in using tolerogenic dendritic cells as a therapeutic alternative in the treatment of type 1 diabetes. World J Diabetes 2021; 12:603-615. [PMID: 33995848 PMCID: PMC8107985 DOI: 10.4239/wjd.v12.i5.603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells of the pancreatic islets by autoreactive T cells, leading to high blood glucose levels and severe long-term complications. The typical treatment indicated in T1D is exogenous insulin administration, which controls glucose levels; however, it does not stop the autoimmune process. Various strategies have been implemented aimed at stopping β-cell destruction, such as cellular therapy. Dendritic cells (DCs) as an alternative in cellular therapy have gained great interest for autoimmune disease therapy due to their plasticity to acquire immunoregulatory properties both in vivo and in vitro, performing functions such as anti-inflammatory cytokine secretion and suppression of autoreactive lymphocytes, which are dependent of their tolerogenic phenotype, displayed by features such as semimature phenotype, low surface expression of stimulatory molecules to prime T cells, as well as the elevated expression of inhibitory markers. DCs may be obtained and propagated easily in optimal amounts from peripheral blood or bone marrow precursors, such as monocytes or hematopoietic stem cells, respectively; therefore, various protocols have been established for tolerogenic (tol)DCs manufacturing for therapeutic research in the treatment of T1D. In this review, we address the current advances in the use of tolDCs for T1D therapy, encompassing protocols for their manufacturing, the data obtained from preclinical studies carried out, and the status of clinical research evaluating the safety, feasibility, and effectiveness of tolDCs.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Honorio Torres-Aguilar
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
3
|
Alvelos MI, Juan-Mateu J, Colli ML, Turatsinze JV, Eizirik DL. When one becomes many-Alternative splicing in β-cell function and failure. Diabetes Obes Metab 2018; 20 Suppl 2:77-87. [PMID: 30230174 PMCID: PMC6148369 DOI: 10.1111/dom.13388] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction and death are determinant events in type 1 diabetes (T1D), but the molecular mechanisms behind β-cell fate remain poorly understood. Alternative splicing is a post-transcriptional mechanism by which a single gene generates different mRNA and protein isoforms, expanding the transcriptome complexity and enhancing protein diversity. Neuron-specific and certain serine/arginine-rich RNA binding proteins (RBP) are enriched in β-cells, playing crucial roles in the regulation of insulin secretion and β-cell survival. Moreover, alternative exon networks, regulated by inflammation or diabetes susceptibility genes, control key pathways and processes for the correct function and survival of β-cells. The challenge ahead of us is to understand the precise role of alternative splicing regulators and splice variants on β-cell function, dysfunction and death and develop tools to modulate it.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Maikel Luis Colli
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| |
Collapse
|
4
|
Fisher JD, Acharya AP, Little SR. Micro and nanoparticle drug delivery systems for preventing allotransplant rejection. Clin Immunol 2015; 160:24-35. [PMID: 25937032 DOI: 10.1016/j.clim.2015.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/20/2022]
Abstract
Despite decades of advances in transplant immunology, tissue damage caused by acute allograft rejection remains the primary cause of morbidity and mortality in the transplant recipient. Moreover, the long-term sequelae of lifelong immunosuppression leaves patients at risk for developing a host of other deleterious conditions. Controlled drug delivery using micro- and nanoparticles (MNPs) is an effective way to deliver higher local doses of a given drug to specific tissues and cells while mitigating systemic effects. Herein, we review several descriptions of MNP immunotherapies aimed at prolonging allograft survival. We also discuss developments in the field of biomimetic drug delivery that use MNP constructs to induce and recruit our bodies' own suppressive immune cells. Finally, we comment on the regulatory pathway associated with these drug delivery systems. Collectively, it is our hope the studies described in this review will help to usher in a new era of immunotherapy in organ transplantation.
Collapse
Affiliation(s)
- James D Fisher
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav P Acharya
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|