1
|
Shang L, Roffel S, Slomka V, D'Agostino EM, Metris A, Buijs MJ, Brandt BW, Deng D, Gibbs S, Krom BP. An in vitro model demonstrating homeostatic interactions between reconstructed human gingiva and a saliva-derived multispecies biofilm. MICROBIOME 2025; 13:58. [PMID: 40022258 PMCID: PMC11869481 DOI: 10.1186/s40168-025-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/07/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND In the oral cavity, host-microbe interactions (HMI) continuously occur and greatly impact oral health. In contrast to the well-studied disease-associated HMI during, for example, periodontitis, HMI that are essential in maintaining oral health have been rarely investigated, especially in a human-relevant context. The aim of this study was to extensively characterize homeostatic HMI between saliva-derived biofilms and a reconstructed human gingiva (RHG). RHG was reconstructed following the structure of native gingiva, composed of a multilayered epithelium formed by keratinocytes and a fibroblast-populated compartment. To mimic the oral environment, RHG were inoculated with pooled human saliva resuspended in different saliva substitute media and incubated for 2 or 4 days. The co-cultured biofilms were retrieved and characterized by viable bacterial counting and compositional profiling (16S rRNA gene sequencing). RHG was investigated for metabolic activity (MTT assay), tissue histology (hematoxylin and eosin staining), epithelial proliferation (Ki67 staining), antimicrobial peptide expression, and cytokine secretion. RESULTS Viable biofilms were detected up to day 4 of co-culturing. Bacterial counts indicated biofilm growth from the inoculation to day 2 and maintained thereafter at a similar level until day 4. All biofilms shared similar composition throughout 4 days, independent of co-culture time and different saliva substitute media used during inoculation. Biofilms were diverse with Streptococcus, Haemophilus, and Neisseria being the dominating genera. While supporting biofilm development, RHG displayed no significant changes in metabolic activity, tissue histology, or epithelial proliferation. However, in the presence of biofilms, the antimicrobial peptides elafin and human β-defensin-2 were upregulated, and the secretion of cytokines IL-6, CXCL1, CXCL8, CCL5, and CCL20 increased. CONCLUSION This model mimicked homeostatic HMI where a healthy gingiva supported a viable, diverse, and stable microbial community, incorporating bacterial genera found on native gingiva. The gingiva model maintained its tissue integrity and exerted protective responses in the presence of biofilms over time. This study adds to the evidence that shows the important role of the host in maintaining homeostatic HMI that are essential for oral health. Video Abstract.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands.
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | - Aline Metris
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedford, UK
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre Location Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| |
Collapse
|
2
|
Makkar H, Sriram G. Advances in modeling periodontal host-microbe interactions: insights from organotypic and organ-on-chip systems. LAB ON A CHIP 2025; 25:1342-1371. [PMID: 39963082 PMCID: PMC11833442 DOI: 10.1039/d4lc00871e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Periodontal disease, a chronic inflammatory condition affecting the supporting structures of teeth, is driven by an imbalanced interaction between the periodontal microbiota and the host inflammatory response. Beyond its local impact, periodontal disease is associated with systemic conditions such as diabetes mellitus, cardiovascular disease, and inflammatory bowel disease, emphasizing the importance of understanding its mechanisms. Traditional pre-clinical models, such as monolayer cultures and animal studies, have provided foundational insights but are limited by their physiological relevance and ethical concerns. Recent advancements in tissue engineering and microfluidic technologies have led to the development of three-dimensional (3D) organotypic culture models and organ-on-chip systems that more closely mimic native tissue microenvironments. This review provides an overview of the evolution of methods to study periodontal host-microbe interactions, from simple 2D monolayer cultures to complex 3D organotypic and microfluidic organ-on-chip (OoC) models. We discuss various fabrication strategies, host-microbe co-culture techniques, and methods for evaluating outcomes in these advanced models. Additionally, we highlight insights gained from gut-on-chip platforms and their potential applications in periodontal research and understanding oral-systemic links of periodontal disease. Through a comprehensive overview of current advancements and future directions, this review provides insights on the transformative potential of OoC technology in periodontal research, offering new avenues for studying disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, 119085, Singapore.
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, 119085, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
3
|
Shang L, Deng D, Krom BP, Gibbs S. Oral host-microbe interactions investigated in 3D organotypic models. Crit Rev Microbiol 2024; 50:397-416. [PMID: 37166371 DOI: 10.1080/1040841x.2023.2211665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the in vivo complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These in vitro models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Makkar H, Lim CT, Tan KS, Sriram G. Modeling periodontal host-microbe interactions using vascularized gingival connective tissue equivalents. Biofabrication 2023; 15:045008. [PMID: 37473752 DOI: 10.1088/1758-5090/ace935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Gingival connective tissue and its vasculature play a crucial role in the host's immune response against the periodontal microbiome and serve as a bridge between the oral and systemic environments. However, there is a lack of representative models that mimic the complex features of vascularized gingival connective tissue and its interaction with the periodontal microbiome, hindering our understanding of periodontal health and disease. Towards this pursuit, we present the characterization of vascularized gingival connective tissue equivalents (CTEs) as a model to study the interactions between oral biofilm colonizers and gingival tissues in healthy and diseased states. Whole-mount immunolabeling and label-free confocal reflectance microscopy of human fibrin-based matrix embedded with gingival fibroblasts and microvascular endothelial cells demonstrated the generation of bi-cellular vascularized gingival CTEs. Next, we investigated the response of the vascularized gingival CTEs to early, intermediate, and late oral biofilm colonizers. Despite colonization, the early colonizers did not elicit any significant change in the production of the cytokines and chemokines by the CTEs representative of the commensal and homeostatic state. In contrast, intermediate and late colonizers representing a transition to a diseased state exhibited connective tissue and vascular invasion, and elicited a differential immune response accompanied by increased monocyte migration. The culture supernatants produced by the vascularized gingival CTEs in response to early and intermediate colonizers polarized macrophages towards an immunomodulatory M2-like phenotype which activates and protects the host, while the late colonizers polarized towards a pro-inflammatory M1-like phenotype. Lastly,in silicoanalysis showed a high strength of associations between the proteins and transcripts investigated with periodontitis and vascular diseases. In conclusion, the vascularized gingival CTEs provide a biomimeticin vitroplatform to study host-microbiome interactions and innate immune response in periodontal health and diseased states, which potentially paves the way toward the development and assessment of novel periodontal therapeutics.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| |
Collapse
|
5
|
Makkar H, Zhou Y, Tan KS, Lim CT, Sriram G. Modeling Crevicular Fluid Flow and Host-Oral Microbiome Interactions in a Gingival Crevice-on-Chip. Adv Healthc Mater 2023; 12:e2202376. [PMID: 36398428 DOI: 10.1002/adhm.202202376] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Gingival crevice and gingival crevicular fluid (GCF) flow play a crucial role at the gingiva-oral microbiome interface which contributes toward maintaining the balance between gingival health and periodontal disease. Interstitial flow of GCF strongly impacts the host-microbiome interactions and tissue responses. However, currently available in vitro preclinical models largely disregard the dynamic nature of gingival crevicular microenvironment, thus limiting the progress in the development of periodontal therapeutics. Here, a proof-of-principle "gingival crevice-on-chip" microfluidic platform to culture gingival connective tissue equivalent (CTE) under dynamic interstitial fluid flow mimicking the GCF is described. On-chip co-culture using oral symbiont (Streptococcus oralis) shows the potential to recapitulate microbial colonization, formation of biofilm-like structures at the tissue-microbiome interface, long-term co-culture, and bacterial clearance secondary to simulated GCF (s-GCF) flow. Further, on-chip exposure of the gingival CTEs to the toll-like receptor-2 (TLR-2) agonist or periodontal pathogen Fusobacterium nucleatum demonstrates the potential to mimic early gingival inflammation. In contrast to direct exposure, the induction of s-GCF flow toward the bacterial front attenuates the secretion of inflammatory mediators demonstrating the protective effect of GCF flow. This proposed in vitro platform offers the potential to study complex host-microbe interactions in periodontal disease and the development of periodontal therapeutics under near-microphysiological conditions.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Ying Zhou
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| |
Collapse
|
6
|
Firatli Y, Firatli E, Loimaranta V, Elmanfi S, Gürsoy UK. Regulation of gingival keratinocyte monocyte chemoattractant protein-1-induced protein (MCPIP)-1 and mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 expressions by periodontal bacteria, lipopolysaccharide, and interleukin-1β. J Periodontol 2023; 94:130-140. [PMID: 35712915 PMCID: PMC10087685 DOI: 10.1002/jper.22-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The aim of this study was to evaluate oral bacteria- and interleukin (IL)-1β-induced protein and mRNA expression profiles of monocyte chemoattractant protein-1-induced protein (MCPIP)-1 and mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 in human gingival keratinocyte monolayers and organotypic oral mucosal models. METHODS Human gingival keratinocyte (HMK) monolayers were incubated with Porphyromonas gingivalis, Fusobacterium nucleatum, P. gingivalis lipopolysaccharide (LPS) and IL-1β. The protein levels of MCPIP-1 and MALT-1 were examined by immunoblots and mRNA levels by qPCR. MCPIP-1 and MALT-1 protein expression levels were also analyzed immunohistochemically using an organotypic oral mucosal model. One-way analysis of variance followed by Tukey correction was used in statistical analyses. RESULTS In keratinocyte monolayers, MCPIP-1 protein expression was suppressed by F. nucleatum and MALT-1 protein expression was suppressed by F. nucleatum, P. gingivalis LPS and IL-1β. P. gingivalis seemed to degrade MCPIP-1 and MALT-1 at all tested time points and degradation was inhibited when P. gingivalis was heat-killed. MCPIP-1 mRNA levels were increased by P. gingivalis, F. nucleatum, and IL-1β, however, no changes were observed in MALT-1 mRNA levels. CONCLUSION Gingival keratinocyte MCPIP-1 and MALT-1 mRNA and protein expression responses are regulated by infection and inflammatory mediators. These findings suggest that periodontitis-associated bacteria-induced modifications in MCPIP-1 and MALT-1 responses can be a part of periodontal disease pathogenesis.
Collapse
Affiliation(s)
- Yigit Firatli
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Erhan Firatli
- Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Vuokko Loimaranta
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Chen Y, Shi T, Li Y, Huang L, Yin D. Fusobacterium nucleatum: The Opportunistic Pathogen of Periodontal and Peri-Implant Diseases. Front Microbiol 2022; 13:860149. [PMID: 35369522 PMCID: PMC8966671 DOI: 10.3389/fmicb.2022.860149] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Peri-implant diseases are considered to be a chronic destructive inflammatory destruction/damage occurring in soft and hard peri-implant tissues during the patient’s perennial use after implant restoration and have attracted much attention because of their high incidence. Although most studies seem to suggest that the pathogenesis of peri-implant diseases is similar to that of periodontal diseases and that both begin with microbial infection, the specific mechanism of peri-implant diseases remains unclear. As an oral opportunistic pathogen, Fusobacterium nucleatum (F. nucleatum) has been demonstrated to be vital for the occurrence and development of many oral infectious diseases, especially periodontal diseases. More notably, the latest relevant studies suggest that F. nucleatum may contribute to the occurrence and development of peri-implant diseases. Considering the close connection between peri-implant diseases and periodontal diseases, a summary of the role of Fusobacterium nucleatum in periodontal diseases may provide more research directions and ideas for the peri-implantation mechanism. In this review, we summarize the effects of F. nucleatum on periodontal diseases by biofilm formation, host infection, and host response, and then we establish the relationship between periodontal and peri-implant diseases. Based on the above aspects, we discuss the importance and potential value of F. nucleatum in peri-implant diseases.
Collapse
|
8
|
Makkar H, Atkuru S, Tang YL, Sethi T, Lim CT, Tan KS, Sriram G. Differential immune responses of 3D gingival and periodontal connective tissue equivalents to microbial colonization. J Tissue Eng 2022; 13:20417314221111650. [PMID: 35923175 PMCID: PMC9340411 DOI: 10.1177/20417314221111650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Gingival and periodontal ligament fibroblasts are functionally distinct cell
types within the dento-gingival unit that participate in host immune response.
Their microenvironment influences the behavior and immune response to microbial
challenge. We developed three-dimensional gingival and periodontal connective
tissue equivalents (CTEs) using human fibrin-based matrix. The CTEs were
characterized, and the heterogeneity in their innate immune response was
investigated. The CTEs demonstrated no to minimal response to planktonic
Streptococcus mitis and Streptococcus
oralis, while their biofilms elicited a moderate increase in IL-6
and IL-8 production. In contrast, Fusobacterium nucleatum
provoked a substantial increase in IL-6 and IL-8 production. Interestingly, the
gingival CTEs secreted significantly higher IL-6, while periodontal counterparts
produced higher IL-8. In conclusion, the gingival and periodontal CTEs exhibited
differential responses to various bacterial challenges. This gives insights into
the contribution of tissue topography and fibroblast heterogeneity in rendering
protective and specific immune responses toward early biofilm colonizers.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Tanya Sethi
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
9
|
Ziauddin SM, Alam MI, Mae M, Oohira M, Higuchi K, Yamashita Y, Ozaki Y, Yoshimura A. Cytotoxic effects of dental calculus particles and freeze-dried Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum on HSC-2 oral epithelial cells and THP-1 macrophages. J Periodontol 2021; 93:e92-e103. [PMID: 34486125 DOI: 10.1002/jper.21-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Periodontitis is an inflammatory disease initiated by dental deposits. Microorganisms in the dental biofilm induce cell death in epithelial cells, contributing to the breakdown of epithelial barrier function. Recently, dental calculus has also been implicated in pyroptotic cell death in oral epithelium. We analyzed the cytotoxic effects of dental calculus and freeze-dried periodontopathic bacteria on oral epithelial cells and macrophages. METHODS HSC-2 (human oral squamous carcinoma cells) and phorbol 12-myristate 13-acetate-differentiated THP-1 macrophages were exposed to dental calculus or one of two species of freeze-dried bacterium, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum. Following incubation for 24 hours, we measured cytotoxicity via lactate dehydrogenase release. Cells were then incubated with glyburide, an NLRP3 inflammasome inhibitor, to assess the potential role of pyroptosis. We also conducted a permeability assay to analyze the effects on epithelial barrier function. RESULTS Dental calculus induced dose-dependent cell death in HSC-2 cells, whereas cell death induced by freeze-dried bacteria was insignificant. Conversely, freeze-dried bacteria induced more cell death than dental calculus in THP-1 macrophages. Cell death induced by dental calculus but not by freeze-dried bacteria was inhibited by glyburide, indicating that these are different types of cell death. In the permeability assays, dental calculus but not freeze-dried bacteria attenuated the barrier function of HSC-2 cell monolayers. CONCLUSION Due to the low sensitivity of HSC-2 cells to microbial cytotoxicity, dental calculus had stronger cytotoxic effects on HSC-2 cell monolayers than freeze-dried A. actinomycetemcomitans and F. nucleatum, suggesting that it plays a critical role in the breakdown of crevicular/pocket epithelium integrity.
Collapse
Affiliation(s)
- S M Ziauddin
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Mohammad Ibtehaz Alam
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Megumi Mae
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masayuki Oohira
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kanako Higuchi
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasunori Yamashita
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yukio Ozaki
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
10
|
Tabatabaei F, Moharamzadeh K, Tayebi L. Three-Dimensional In Vitro Oral Mucosa Models of Fungal and Bacterial Infections. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:443-460. [PMID: 32131719 DOI: 10.1089/ten.teb.2020.0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral mucosa is the target tissue for many microorganisms involved in periodontitis and other infectious diseases affecting the oral cavity. Three-dimensional (3D) in vitro and ex vivo oral mucosa equivalents have been used for oral disease modeling and investigation of the mechanisms of oral bacterial and fungal infections. This review was conducted to analyze different studies using 3D oral mucosa models for the evaluation of the interactions of different microorganisms with oral mucosa. In this study, based on our inclusion criteria, 43 articles were selected and analyzed. Different types of 3D oral mucosa models of bacterial and fungal infections were discussed in terms of the biological system used, culture conditions, method of infection, and the biological endpoints assessed in each study. The critical analysis revealed some contradictory reports in this field of research in the literature. Challenges in recovering bacteria from oral mucosa models were further discussed, suggesting possible future directions in microbiomics, including the use of oral mucosa-on-a-chip. The potential use of these 3D tissue models for the evaluation of the effects of antiseptic agents on bacteria and oral mucosa was also addressed. This review concluded that there were many aspects that would require optimization and standardization with regard to using oral mucosal models for infection by microorganisms. Using new technologies-such as microfluidics and bioreactors-could help to reproduce some of the physiologically relevant conditions and further simulate the clinical situation. Impact statement Tissue-engineered or commercial models of the oral mucosa are very useful for the study of diseases that involve the interaction of microorganisms and oral epithelium. In this review, challenges in recovering bacteria from oral mucosa models, the potential use of these three-dimensional tissue models for the evaluation of the effects of antiseptic agents, and future directions in microbiomics are discussed.
Collapse
Affiliation(s)
- Fahimeh Tabatabaei
- School of Dentistry, Marquette University, Milwaukee, Wisconsin.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Björnfot Holmström S, Clark R, Zwicker S, Bureik D, Kvedaraite E, Bernasconi E, Nguyen Hoang AT, Johannsen G, Marsland BJ, Boström EA, Svensson M. Gingival Tissue Inflammation Promotes Increased Matrix Metalloproteinase-12 Production by CD200Rlow Monocyte-Derived Cells in Periodontitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:4023-4035. [DOI: 10.4049/jimmunol.1700672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022]
|
12
|
Bao K, Papadimitropoulos A, Akgül B, Belibasakis GN, Bostanci N. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system. Virulence 2015; 6:265-73. [PMID: 25587671 PMCID: PMC4601317 DOI: 10.4161/21505594.2014.978721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontal infection involves a complex interplay between oral biofilms, gingival tissues and cells of the immune system in a dynamic microenvironment. A humanized in vitro model that reduces the need for experimental animal models, while recapitulating key biological events in a periodontal pocket, would constitute a technical advancement in the study of periodontal disease. The aim of this study was to use a dynamic perfusion bioreactor in order to develop a gingival epithelial-fibroblast-monocyte organotypic co-culture on collagen sponges. An 11 species subgingival biofilm was used to challenge the generated tissue in the bioreactor for a period of 24 h. The histological and scanning electron microscopy analysis displayed an epithelial-like layer on the surface of the collagen sponge, supported by the underlying ingrowth of gingival fibroblasts, while monocytic cells were also found within the sponge mass. Bacterial quantification of the biofilm showed that in the presence of the organotypic tissue, the growth of selected biofilm species, especially Campylobacter rectus, Actinomyces oris, Streptococcus anginosus, Veillonella dispar, and Porphyromonas gingivalis, was suppressed, indicating a potential antimicrobial effect by the tissue. Multiplex immunoassay analysis of cytokine secretion showed that interleukin (IL)-1 β, IL-2, IL-4, and tumor necrosis factor (TNF)-α levels in cell culture supernatants were significantly up-regulated in presence of the biofilm, indicating a positive inflammatory response of the organotypic tissue to the biofilm challenge. In conclusion, this novel host-biofilm interaction organotypic model might resemble the periodontal pocket and have an important impact on the study of periodontal infections, by minimizing the need for the use of experimental animal models.
Collapse
Affiliation(s)
- Kai Bao
- a Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich ; Zürich , Switzerland
| | | | | | | | | |
Collapse
|
13
|
Magalhaes MAO, Glogauer JE, Glogauer M. Neutrophils and oral squamous cell carcinoma: lessons learned and future directions. J Leukoc Biol 2014; 96:695-702. [DOI: 10.1189/jlb.4ru0614-294r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Zeidán-Chuliá F, Gursoy M, de Oliveira BHN, Gelain DP, Könönen E, Gursoy UK, Moreira JCF, Uitto VJ. Focussed microarray analysis of apoptosis in periodontitis and its potential pharmacological targeting by carvacrol. Arch Oral Biol 2014; 59:461-9. [DOI: 10.1016/j.archoralbio.2014.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/17/2022]
|