1
|
Kotsakis GA, Ganesan SM. Microbial Dysbiosis, Titanium Release, and Peri-implantitis. J Dent Res 2025; 104:473-480. [PMID: 39953673 DOI: 10.1177/00220345241307939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
The peri-implant mucosal barrier is a unique microenvironment where host-microbiome interactions take place on the surface of an implanted biomaterial. Therefore, peri-implant immunity not only is quintessential to oral health but also contributes to the maintenance of the biomaterial-tissue equilibrium in health. This review delves into the intricate interplay between host factors, biomaterial properties, and the microbiome with a focus on the mechanisms underlying peri-implant dysbiosis. Investigations into this complex milieu have led to the emerging understanding of titanium particles released from the implant as significant exposomes. When biomaterial breakdown occurs, implant degradation products form particles that are released in the peri-implant crevice, exerting profound effects on the local immune surveillance. Comparative analyses with natural dentition highlight the distinct immune responses elicited by titanium particles, thereby implicating them as a key modulator of peri-implant dysbiosis that differentiates peri-implant from periodontal inflammation. Nonetheless, disruptions in the homeostatic balance of host-biomaterial interactions are linked to pathogenic shifts of the peri-implant microbiome that are correlated with titanium particles in humans. Collectively, it is now well established that to elucidate the mechanisms governing peri-implant dysbiosis, this triangle of host-microbiome-biomaterial has to be conjointly investigated. This review highlights findings from studies that have underscored the multifaceted nature of peri-implant dysbiosis, emphasizing the intricate crosstalk between host immunity, biomaterial characteristics, and microbial ecology. These findings suggest that the titanium particle exposome may alter key inflammatory cascades in the peri-implant tissues including toll-like receptor activation and inflammasome and complement signaling, which lead to nonresolving destructive inflammation. The presence of abiotic danger signals in the form of implant degradation products in peri-implant tissues may make antimicrobial monotherapies largely ineffective for managing peri-implantitis. In turn, the future of peri-implantitis therapy seems to lie in the development of targeted host modulatory interventions against titanium-mediated inflammatory pathways.
Collapse
Affiliation(s)
- G A Kotsakis
- Rutgers School of Dental Medicine, Newark, NJ, USA
| | - S M Ganesan
- The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| |
Collapse
|
2
|
Dionigi C, Nagy G, Derks J, Ichioka Y, Tomasi C, Larsson L, Primetzhofer D, Berglundh T. Titanium micro-particles are commonly found in soft tissues surrounding dental implants. COMMUNICATIONS MEDICINE 2025; 5:78. [PMID: 40102654 PMCID: PMC11920262 DOI: 10.1038/s43856-025-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/30/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Dental implants are one of the most frequently used medical devices for therapeutic purposes in dentistry. Peri-implantitis is a severe, microbial biofilm-associated condition, characterized by inflammation in peri-implant soft tissues and destruction of supporting bone. It has been suggested that metal particles originating from the implant may influence the local host response to microbial biofilms. METHODS Soft tissue biopsies were collected from implant sites with and without peri-implantitis in 21 patients. Micro Proton-induced X-ray Emission (µ-PIXE) analysis was used to localize, quantify and characterize titanium micro-particles within tissues. RNA sequencing was performed to evaluate potential associations between titanium micro-particles and gene expression profiles in peri-implantitis lesions. RESULTS Titanium micro-particles are consistent findings in soft tissues surrounding dental implants. Their occurrence varies across patients but not between sites with and without peri-implantitis within the same individual. Most particles reside in a 2-mm wide tissue portion close to the implant/tissue interface. The time in function of the implants does not influence the volumetric density of titanium micro-particles, while implant systems do. Fourteen differentially expressed genes are identified when comparing peri-implantitis samples with high and low densities of titanium micro-particles. The gene-set enrichment analysis reveals functions related to the regulation of the immune response and epithelial development. CONCLUSIONS The present results indicate that titanium micro-particles are commonly found in tissues surrounding dental implants and are not associated with the occurrence of peri-implantitis.
Collapse
Affiliation(s)
- Carlotta Dionigi
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gyula Nagy
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Jan Derks
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinic of Periodontics, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden
| | - Yuki Ichioka
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cristiano Tomasi
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Primetzhofer
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- Tandem Laboratory, Uppsala University, Uppsala, Sweden
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Clinic of Periodontics, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden.
| |
Collapse
|
3
|
Wakuda S, Hasuike A, Fujiwara K, Sakai R, Chaurasia A, Uchiyama T, Sato S. Titanium particle-induced inflammasome in human gingival epithelial cells. J Dent Sci 2025; 20:384-392. [PMID: 39873089 PMCID: PMC11762583 DOI: 10.1016/j.jds.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/16/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Peri-implantitis remains a substantial challenge. This study investigated the effect of titanium particles on human oral epithelial cells, focusing on the nucleotide-binding domain and leucine-rich repeat protein (NLRP) 3 inflammasome. Materials and methods The Ca9-22 human gingival epithelial cell line was subjected to incubation with titanium particles. To evaluate cell viability, the MTT assay was employed. Total RNA was extracted, and messenger RNA (mRNA) expressions of COX2, TGF-β1, NLRP1, NLPR3, CASP1, and AIM2 were analyzed. The concentration of interleukin (IL)1β in cell supernatants was quantified through enzyme-linked immunosorbent assay. Intracellular reactive oxygen species (ROS) were visualized using an ROS assay Kit. Results Ca9-22 cells treated with titanium particles showed >75% cell viability across all concentrations tested, with consistent results. mRNA expressions of inflammation-related genes (COX2 and TGF-β1) significantly increased in a dose-dependent manner. The mRNA expression of NLRP3 and CASP1, as well as the secretion of IL1β, increased after 6-h incubation with titanium particles. Moreover, the ROS assay results showed increased production of ROS after treatment with titanium particles, whereas NLRP3 expression and IL1β secretion reduced after treatment with N-acetyl-l-cysteine (ROS scavenger). Conclusion Our findings indicate that titanium particles possess a distinct ability to trigger the NLRP3 inflammasome, partly by producing ROS.
Collapse
Affiliation(s)
- Shin Wakuda
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
- Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryo Sakai
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
- Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences King George's Medical University, Chowk, India
| | - Toshio Uchiyama
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
- Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
4
|
Zhang J, Tong Z, Chen L, Qian Y, Lu Y, Chen Q, Si M. Development and applications of peri-implantitis mouse models. Oral Dis 2024; 30:3788-3798. [PMID: 38501334 DOI: 10.1111/odi.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Peri-implantitis is one of the most common complications of implants. However, its pathogenesis has not been clarified. In recent years, mouse models are gradually being used in the study of peri-implantitis. This review aims to summarize the methods used to induce peri-implantitis in mice and their current applications. METHOD Articles of peri-implantitis mouse models were collected. We analyzed the various methods of inducing peri-implantitis and their application in different areas. RESULTS Most researchers have induced peri-implantitis by silk ligatures. Some others have induced peri-implantitis by Pg gavage and LPS injection. Current applications of peri-implantitis mouse models are in the following areas: investigation of pathogenesis and exploration of new interventions, comparison of peri-implantitis with periodontitis, the interaction between systemic diseases and peri-implantitis, etc. CONCLUSION: Silk ligature for 2-4 weeks, Pg gavage for 6 weeks, and LPS injection for 6 weeks all successfully induced peri-implantitis in mice. Mice have the advantages of mature gene editing technology, low cost, and short time to induce peri-implantitis. It has applications in the study of pathogenesis, non-surgical treatments, and interactions with other diseases. However, compared with large animals, mice also have a number of disadvantages that limit their application.
Collapse
Affiliation(s)
- Jianwei Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yinjie Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Ciszyński M, Chwaliszewski B, Simka W, Dominiak M, Gedrange T, Hadzik J. Zirconia Dental Implant Designs and Surface Modifications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4202. [PMID: 39274592 PMCID: PMC11396535 DOI: 10.3390/ma17174202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Titanium currently has a well-established position as the gold standard for manufacturing dental implants; however, it is not free of flaws. Mentions of possible soft-tissue discoloration, corrosion, and possible allergic reactions have led to the development of zirconia dental implants. Various techniques for the surface modification of titanium have been applied to increase titanium implants' ability to osseointegrate. Similarly, to achieve the best possible results, zirconia dental implants have also had their surface modified to promote proper healing and satisfactory long-term results. Despite zirconium oxide being a ceramic material, not simply a metal, there have been mentions of it being susceptible to corrosion too. In this article, we aim to review the literature available on zirconia implants, the available techniques for the surface modification of zirconia, and the effects of these techniques on zirconia's biological properties. Zirconia's biocompatibility and ability to osseointegrate appears unquestionably good. Despite some of its mechanical properties being, factually, inferior to those of titanium, the benefits seem to outweigh the drawbacks. Zirconia implants show very good success rates in clinical research. This is partially due to available methods of surface treatment, including nanotopography alterations, which allow for improved wettability, bone-to-implant contact, and osteointegration in general.
Collapse
Affiliation(s)
- Michał Ciszyński
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Bartosz Chwaliszewski
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Marzena Dominiak
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Tomasz Gedrange
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
- Department of Orthodontics, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jakub Hadzik
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| |
Collapse
|
6
|
Xu W, Yu F, Addison O, Zhang B, Guan F, Zhang R, Hou B, Sand W. Microbial corrosion of metallic biomaterials in the oral environment. Acta Biomater 2024; 184:22-36. [PMID: 38942189 DOI: 10.1016/j.actbio.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.
Collapse
Affiliation(s)
- Weichen Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China.
| | - Fei Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266021, China.
| | - Owen Addison
- Centre for Oral Clinical Translational Science, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Biofilm Centre, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
7
|
Dotta TC, D'Ercole S, Iezzi G, Pedrazzi V, Galo R, Petrini M. The Interaction between Oral Bacteria and 3D Titanium Porous Surfaces Produced by Selective Laser Melting-A Narrative Review. Biomimetics (Basel) 2024; 9:461. [PMID: 39194440 DOI: 10.3390/biomimetics9080461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The interaction between oral bacteria and dental implant surfaces is a critical factor in the success and longevity of dental implants. With advancements in additive manufacturing technologies, selective laser melting (SLM) has emerged as a prominent method for producing titanium implants with highly controlled microstructures and porosities. These 3D printed titanium surfaces offer significant benefits, such as enhanced osseointegration and improved mechanical properties. However, the same surface features that promote bone cell attachment and proliferation may also provide favorable conditions for bacterial adhesion and biofilm formation. Understanding the dynamics of these interactions is essential for developing implant surfaces that can effectively resist bacterial colonization while promoting tissue integration. This narrative review explores the complex interplay between oral bacteria and SLM-produced titanium porous surfaces, examining current research findings and potential strategies for optimizing implant design to mitigate the risks of infection and ensure successful clinical outcomes.
Collapse
Affiliation(s)
- Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil
| | - Simonetta D'Ercole
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vinicius Pedrazzi
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil
| | - Rodrigo Galo
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Chronic exposure to TiO 2 micro- and nano particles: A biochemical and histopathological experimental study. J Biomed Mater Res B Appl Biomater 2024; 112:e35443. [PMID: 38968028 DOI: 10.1002/jbm.b.35443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/08/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 μm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.
Collapse
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- Becario de Investigación de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Kurtz
- CONICET, Buenos Aires, Argentina
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Guillermo Maglione
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | | | - Fernando Brites
- CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Lipoproteínas, Buenos Aires, Argentina
| | - Deborah Ruth Tasat
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Guarnieri R, Reda R, Di Nardo D, Miccoli G, Pagnoni F, Zanza A, Testarelli L. Expression of IL-1β, IL-6, TNF-α, and a-MMP-8 in sites with healthy conditions and with periodontal and peri-implant diseases: A case-control study. J Dent Res Dent Clin Dent Prospects 2024; 18:135-142. [PMID: 39071212 PMCID: PMC11282203 DOI: 10.34172/joddd.40958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 07/30/2024] Open
Abstract
Background This study evaluated the gingival crevicular fluid (GCF) and Peri- implant crevicular fluid (PICF) concentrations of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and active metalloproteinase-8 (a-MMP-8) in sites with healthy conditions vs. sites affected by periodontitis (PER) and peri-implantitis (PIM). Methods Periodontally healthy (PH) sites with PER, sites with peri-implant health (PIH), and sites with PIM were investigated intra-individually, according to the inclusion criteria of each group. Probing pocket depth (PPD), plaque index, gingival index, and the presence or absence of bleeding on probing (BoP) were evaluated. In GCF and PICF samples, IL-1β, IL-6, and TNF-α were quantified by ELISA Duoset® kit in combination with Ultramark® micro-ELISA digital reader; a-MMP8 concentration was analyzed by a chairside test (Perio/ImplantSafe®) in combination with a digital reader (ORALyzer®). Results The concentrations of IL-6 and IL-1β, TNF-α, and a-MMP-8 were significantly higher in the PIM and PER sites compared to healthy sites (P<0.05). Significantly higher concentrations of IL-1β and a-MMP-8 were found in PIM vs. PER sites (P<0.05), while the concentrations of IL-6 and TNF-α did not differ between the PIM and PER groups (P>0.05). Conclusion aMMP-8, IL-6, IL-1β, and TNF-α presented higher GCF/PICF concentrations in diseased periodontal and peri-implant sites. However, only the concentrations of IL-1β and a-MMP-8 were significantly higher in PIM than in PER sites.
Collapse
Affiliation(s)
- Renzo Guarnieri
- Private Practice, Treviso, Italy
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Dario Di Nardo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
- Operative Research Unit of Dentistry, Policlinico Universitario Campus Bio-Medico Foundation, Via Alvaro del Portillo, Roma, Italy
| | - Gabriele Miccoli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Pagnoni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessio Zanza
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Barrak FN, Li S. From manufacturers to clinicians, the release of dental implant particles can no longer be ignored. Clin Implant Dent Relat Res 2024; 26:663-667. [PMID: 38369955 DOI: 10.1111/cid.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Fadi N Barrak
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
- VSS Academy Training and Education Ltd., London, UK
| | - Siwei Li
- VSS Academy Training and Education Ltd., London, UK
| |
Collapse
|
11
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
12
|
Alhamad M, Barão VA, Sukotjo C, Mathew MT. The effect of three dental cement types on the corrosion of dental implant surfaces. Heliyon 2024; 10:e23626. [PMID: 38192807 PMCID: PMC10772628 DOI: 10.1016/j.heliyon.2023.e23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Statement of problem One of the main challenges facing dental implant success is peri-implantitis. Recent evidence indicates that titanium (Ti) corrosion products and undetected-residual cement are potential risk factors for peri-implantitis. The literature on the impact of various types of dental cement on Ti corrosion is very limited. Purpose This study aimed to determine the influence of dental cement on Ti corrosion as a function of cement amount and type. Materials and methods Thirty commercially pure Ti grade 4 discs (19 × 7mm) were polished to mirror-shine (Ra ≈ 40 nm). Samples were divided into 10 groups (n = 3) as a cement type and amount function. The groups were no-cement as control, TempBond NE (TB3mm, TB5mm, and TB8mm), FujiCEM-II (FC3mm, FC5mm, and FC8mm), and Panavia-F-2.0 (PC3mm, PC5mm, and PC8mm). Tafel's method estimated corrosion rate (icorr) and corresponding potential (Ecorr) from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data was utilized to obtain Nyquist and Bode plots. An equivalent electrical circuit estimated polarization resistance (Rp) and double-layer capacitance (Cdl). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was conducted to analyze the electrolyte solution after corrosion. pH measurements of the electrolyte were recorded before and after corrosion tests. Finally, the corroded surface was characterized by a 3D white-light microscope and scanning electron microscope. Statistical analysis was conducted using either one-way ANOVA followed by Tukey's Post Hoc test or Kruskal-Wallis followed by Dunn's test based on data distribution. Results Based on cement amount, FC and PC significantly increased icorr in higher amounts (FC8mm-icorr = 8.22 × 10-8A/cm2, PC8mm-icorr = 5.61 × 10-8A/cm2) compared to control (3.35 × 10-8A/cm2). In contrast, TB3mm decreased icorr significantly compared to the control. As a function of cement type, FC increased icorr the most. EIS data agrees with these observations. Finally, corroded surfaces had higher surface roughness (Ra) compared to non-corroded surfaces. Conclusion The study indicated that cement types FC and PC led to increased Ti-corrosion as a function of a higher amount. Hence, the implant stability could be impacted by the selection, excessive cement, and a potentially increased risk of peri-implantitis.
Collapse
Affiliation(s)
- Mostafa Alhamad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Padial-Molina M, Montalvo-Acosta S, Martín-Morales N, Pérez-Carrasco V, Magan-Fernandez A, Mesa F, O’Valle F, Garcia-Salcedo JA, Galindo-Moreno P. Correlation between Inflammasomes and Microbiota in Peri-Implantitis. Int J Mol Sci 2024; 25:961. [PMID: 38256037 PMCID: PMC10815557 DOI: 10.3390/ijms25020961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The activation of inflammasomes is thought to induce the inflammatory process around dental implants. No information is available on the correlation between microbiota and inflammasomes in clinical samples from patients suffering peri-implantitis. For this cross-sectional study, 30 biofilm samples were obtained from 19 patients undergoing surgical treatment for peri-implantitis because of the presence of bleeding on probing, probing depth higher than 6 mm, and radiographic bone loss higher than 3 mm. Then, soft tissue samples from around the implant were also collected. The relative abundance of bacteria and alpha-diversity indexes were calculated after analyzing the 16S rRNA gene using next-generation sequencing. The soft-tissue samples were processed for evaluation of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β. The relative abundance (mean (SD)) of specific species indicated that the most abundant species were Porphyromonas gingivalis (10.95 (14.17)%), Fusobacterium vincentii (10.93 (13.18)%), Porphyromonas endodontalis (5.89 (7.23)%), Prevotella oris (3.88 (4.94)%), Treponema denticola (2.91 (3.19)%), and Tannerella forsythia (2.84 (4.15)%). Several correlations were found between the species and the immunohistochemical detection of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β, both in the epithelium and the lamina propria. A network analysis found an important cluster of variables formed by NLRP3 in the lamina propria and AIM2, caspase-1, and IL-1β in the lamina propria and the epithelium with Prevotella dentalis, Prevotella tannerae, Tannerella forsythia, or Selenomonas timonae. Thus, it could be concluded that inflammasomes NLRP3 and AIM2 and their downstream effectors caspase-1 and interleukin-1β can be significantly associated with specific bacteria.
Collapse
Affiliation(s)
- Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Saray Montalvo-Acosta
- PhD Program in Clinical Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Natividad Martín-Morales
- PhD Program in Biomedicine, University of Granada, 18071 Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Virginia Pérez-Carrasco
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centre for Genomics and Oncological Research, Pfizer–University of Granada–Andalusian Regional Government (GENYO), PTS Granada, 18016 Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Antonio Magan-Fernandez
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain (F.M.)
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain (F.M.)
| | - Francisco O’Valle
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, 18071 Granada, Spain
| | - Jose Antonio Garcia-Salcedo
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centre for Genomics and Oncological Research, Pfizer–University of Granada–Andalusian Regional Government (GENYO), PTS Granada, 18016 Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
14
|
Rajasekar A, Varghese SS. Comparison of Malondialdehyde Levels among Patients with Sandblasted Acid-Etched and Anodized Surface Dental Implants: A Prospective Clinical Study. J Long Term Eff Med Implants 2024; 34:1-7. [PMID: 38505886 DOI: 10.1615/jlongtermeffmedimplants.2023047545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Inflammation that occur as a part of body's response to implant-tissue contact can result in oxidative stress. Therefore, exploring the oxidative stress around different surface treated dental implants is essential to improve the performance of implants. The purpose of this study was to detect and measure the level of malondialdehyde (MDA), oxidative stress marker among patients with sandblasted acid-etched and anodized surface dental implants. In this prospective clinical study, 78 patients who had undergone implant placement for missing single posterior tooth in mandible using sandblasted acid-etched and anodized surface dental implants during August 2019 - December 2019 were enrolled according to strict inclusion and exclusion criteria and were categorized into Group 1: SLA (n = 27), Group 2: SLActive (n = 26), Group 3: TiUnite (n = 25) based on the surface modification of the implants. Peri-implant crevicular fluid (PICF) was collected and MDA was quantified using ELISA kit at 3 months and 1 year. Statistical analysis was performed using one-way ANOVA, followed by Tukey's HSD post hoc. For intragroup comparison, paired t-test was used. MDA levels in group 3 implants was significantly higher than groups 1 and 2 (P ≤ 0.05). On pairwise comparison, there was a statistically significant difference between the groups at baseline (P ≤ 0.05) and 1-year follow-up (P ≤ 0.05). Intragroup comparison showed that there was a statistically significant difference from baseline in all the three groups (P ≤ 0.05). MDA level in peri-implant crevicular fluid was high around TiUnite dental implant as compared to SLA and SLActive implants.
Collapse
Affiliation(s)
- Arvina Rajasekar
- Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Sheeja S Varghese
- Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| |
Collapse
|
15
|
Spinell T, Kröger A, Freitag L, Würfl G, Lauseker M, Hickel R, Kebschull M. Dental implant material related changes in molecular signatures in peri-implantitis - A systematic review of omics in-vivo studies. Dent Mater 2023; 39:1150-1158. [PMID: 37839998 DOI: 10.1016/j.dental.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Titanium particles have been shown in in-vitro studies to lead to the activation of specific pathways, this work aims to systematically review in- vivo studies examining peri-implant and periodontal tissues at the transcriptome, proteome, epigenome and genome level to reveal implant material-related processes favoring peri-implantitis development investigated in animal and human trials. METHODS Inquiring three literature databases (Medline, Embase, Cochrane) a systematic search based on a priori defined PICOs was conducted: '-omics' studies comparing molecular signatures in healthy and infected peri-implant sites and/or healthy and periodontitis-affected teeth in animals/humans. After risk of bias assessments, lists of differentially expressed genes and results of functional enrichment analyses were compiled whenever possible. RESULTS Out of 2187 screened articles 9 publications were deemed eligible. Both healthy and inflamed peri-implant tissues showed distinct gene expression patterns compared to healthy/diseased periodontal tissues in animal (n = 4) or human studies (n = 5), with immune response, bone metabolism and oxidative stress being affected the most. Due to the lack of available re-analyzable data and inconsistency in methodology of the eligible studies, integrative analyses on differential gene expression were not applicable CONCLUSION: The differences of transcriptomic signatures in between peri-implant lesions compared to periodontal tissue might be related to titanium particles arising from dental implants and are in line with the in-vitro data recently published by our group. Nevertheless, limitations emerge from small sample sizes of included studies and insufficient publication of re-analyzable data.
Collapse
Affiliation(s)
- Thomas Spinell
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
| | - Annika Kröger
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, Birmingham, UK
| | - Lena Freitag
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | | | - Michael Lauseker
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Moritz Kebschull
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK; Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University Collegeof Dental Medicine, New York, NY, United States
| |
Collapse
|
16
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
17
|
Xu X, Li L, Wang B, Shi B. Caffeic acid phenethyl ester ameliorates titanium particle-induced bone loss and inflammatory reaction in a mouse acute model. Biochem Biophys Res Commun 2023; 681:47-54. [PMID: 37751634 DOI: 10.1016/j.bbrc.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
With the increasing clinical application of dental and orthopedic implants, the problem of peri-implant osteolysis has attracted attention. The inflammatory response and osteoclast differentiation induced by wear particles play an important role in peri-implant bone loss. However, the treatment of peri-implant osteolysis is still lacking. In the present study, we investigated the effect of caffeic acid phenethyl ester (CAPE) on titanium particles induced bone loss in a mouse model. We found that CAPE significantly suppressed titanium particle-induced bone loss in vivo. CAPE treatment decreased ratio of nuclear factor kappa B receptor activator ligand (RANKL)/osteoprotegerin (OPG) and subsequently reduced osteoclastogenesis in the mouse model. In addition, CAPE downregulated the expression and secretion of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) stimulated by titanium particles in vivo. In summary, we conclude that CAPE prevent the titanium particles-induced bone loss.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Beike Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
18
|
Shigematsu M, Takeda K, Matsunaga S, Sendai Y, Matsuura N, Suzuki R, Azuma T, Sasaki H, Okumura K, Sekine H, Yajima Y, Ohno T. Subgingival titanium wire implantation induces weak inflammatory responses but does not promote substantial T cell activation. Dent Mater J 2023; 42:633-640. [PMID: 37423721 DOI: 10.4012/dmj.2022-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Titanium is a biocompatible material commonly used for dental treatments. However, the detailed mechanism underlying the weak biological activity of titanium has not been elucidated. We investigated both the inflammatory responses and T cell activation induced by solid titanium in the gingiva in mice. Both titanium and nickel wire implantation promoted neutrophil infiltration into the gingiva on day 2. Nickel, but not titanium, wire implantation enhanced proinflammatory cytokine expression and dendritic cell activity in gingival tissue by day 2. Nickel wire implantation enhanced the activity of T cells in draining lymph nodes on day 5. Moreover, T cell and neutrophil infiltration and elevated proinflammatory cytokine expression in the gingival tissue were still observed on day 5. However, no such augmented biological responses were observed after titanium wire implantation. These findings suggest that, unlike nickel, solid titanium does not induce sufficient inflammatory responses leading to T cell activation in gingival tissue.
Collapse
Affiliation(s)
- Masaki Shigematsu
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University
| | - Satoru Matsunaga
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Anatomy, Tokyo Dental College
| | - Yuka Sendai
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Nobutaka Matsuura
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Reiya Suzuki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Toshifumi Azuma
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biochemistry, Tokyo Dental College
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Atopy Research Center, Graduate School of Medicine, Juntendo University
| | - Hideshi Sekine
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Fixed Prosthodontics, Tokyo Dental College
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Tatsukuni Ohno
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
| |
Collapse
|
19
|
Daubert D, Lee E, Botto A, Eftekhar M, Palaiologou A, Kotsakis GA. Assessment of titanium release following non-surgical peri-implantitis treatment: A randomized clinical trial. J Periodontol 2023; 94:1122-1132. [PMID: 37070363 PMCID: PMC10524263 DOI: 10.1002/jper.22-0716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Peri-implantitis is a frequent finding. Initial treatment involves non-surgical debridement of the implant surface. Recent studies have found a correlation between titanium (Ti) particle release and peri-implantitis, yet there is a dearth of information regarding the effect of various non-surgical instrumentation on particle release or peri-implantitis resolution. METHODS Patients with peri-implantitis were recruited for a randomized, blinded, parallel-group clinical trial. The implants were randomized to treatment composed of Ti curettes ("Mech" group) or implant-specific treatment composed of rotary polymer microbrushes ("Imp" group). Ti release in submucosal peri-implant plaque pre- and 8 weeks posttreatment was assessed as the primary outcome. Peri-implant probing depth, bleeding on probing, and suppuration on probing were evaluated and compared between groups. RESULTS Thirty-four participants completed treatment; 18 were randomized to the Mech group and 16 to the Imp group. The groups were comparable for Ti levels and probing depths at baseline. A trend was noted for 10-fold greater Ti dissolution in the Mech group posttreatment compared to the Imp group (p = 0.069). The Imp group had a significant reduction in probing depth posttreatment (p = 0.006), while the Mech group reduction was not significant. CONCLUSION Peri-implantitis treated non-surgically with implant-specific instruments (Imp group) had a significantly greater decrease in probing depth versus the Mech treatment group. This improvement was linked with a trend for less Ti release to the peri-implant plaque by the non-abrasive treatment.
Collapse
Affiliation(s)
- Diane Daubert
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Eddie Lee
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Antonella Botto
- Department of Periodontics, UT Health San Antonio, San Antonio, Texas, USA
| | - Mojdeh Eftekhar
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | | | - Georgios A Kotsakis
- Department of Periodontics, UT Health San Antonio, San Antonio, Texas, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Xu J, Lu Y, Pan X, Zhan D, Wang Q, Zhang N. Antibacterial performance of a porous Cu-bearing titanium alloy by laser additive manufacturing. Front Bioeng Biotechnol 2023; 11:1226745. [PMID: 37600307 PMCID: PMC10435858 DOI: 10.3389/fbioe.2023.1226745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is the most common species that causes peri-implantitis. It forms an irreversible dense biofilm and causes inflammation. A novel 3D-printed porous TC4-6Cu alloy was fabricated using selective laser melting (SLM) technology for the dental implant, which is anticipated to inhibit biofilm formation. We attempted to investigate the antibacterial ability and antibacterial mechanism of the 3D-printed porous TC4-6Cu alloy against P. gingivalis. This work used scanning electron microscopy (SEM) and laser confocal microscopy (CLSM) to detect the antimicrobial ability of the alloy against sessile P. gingivalis. The results indicated that the 3D-printed porous TC4-6Cu alloy could cause bacterial fragmentation and deformation. Plate antimicrobial counting experiments showed that the antibacterial rates of the alloy against adherent bacteria and planktonic bacteria after 24 h were 98.05% and 73.92%, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cu2+ were tested to appraise the antibacterial property of the alloy against planktonic P. gingivalis. The relationship between the antibacterial mechanism of the alloy with oxidative stress was evaluated through ROS fluorescence intensity and protein leakage concentration. The results revealed that the alloy significantly eliminated adherent bacteria and inhibited biofilm formation. Moreover, 3D-printed porous TC4-6Cu alloy demonstrated significant bactericidal ability by inducing the production of reactive oxygen species (ROS), which could result in protein leakage from the bacterial cell membrane. This research may open a new perspective on the development and biomedical applications for dental implantation.
Collapse
Affiliation(s)
- Jiawei Xu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xiyun Pan
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Desong Zhan
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ning Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
21
|
Platt A, Liu CC, Gubler A, Naenni N, Thoma D, Schmidlin PR. In vitro evaluation of different protective techniques to reduce titanium particle contamination during implantoplasty. Clin Oral Investig 2023; 27:4205-4213. [PMID: 37140763 PMCID: PMC10415425 DOI: 10.1007/s00784-023-05037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Our aim is to study titanium remains in a bone model during standardized implantoplasty under different isolation and protective modalities. MATERIAL AND METHODS Forty implants were placed in artificial spongy bone blocks mimicking a horizontal bone loss and implant neck protrusion of 5 mm. Samples were randomly divided into four groups (n = 10), which were treated as follows: rubber dam (A), a dental adhesive paste (B), bone wax (C), and an unprotected positive control (D). Implantoplasty was performed using carbide and diamond burs under strict water cooling and standardized suction. After removal of the respective isolation materials, the bone blocks were thoroughly rinsed with tap water for 3 min and titanium chips were collected using a filter integrated in the model. The filter paper was removed and dissolved in 37% hydrochloric acid for 2 h at 120 °C and the titanium remnants were quantified using atomic absorption spectrometry. RESULTS None of the test groups were able to completely prevent titanium particle contamination. Rubber dam (691 ± 249 µg) and bone wax (516 ± 157 µg) were found to be significantly more protective than the positive control (2313 ± 747 µg) (p < 0.001) with respect to the amount of titanium particles that remained in the bone model after implantoplasty. The adhesive paste group (1863.5 ± 538 µg) was not significantly different from the positive control (p = 0.19). CONCLUSIONS Despite some limitations of the present study, titanium particles resulting from a standardized implantoplasty can be assumed to be significantly reduced when the tissues/bone were protected with rubber dam and bone wax, or a combination, depending on individual accessibility. CLINICAL RELEVANCE Tissue protective measures to reduce or avoid particle contamination during implantoplasty is possible and should be considered and further clinically assessed to avoid iatrogenic inflammatory reactions.
Collapse
Affiliation(s)
- A Platt
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - C C Liu
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - A Gubler
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - N Naenni
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - D Thoma
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - P R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
22
|
Cionca N, Meyer J, Michalet S, Varesio E, Hashim D. Quantification of titanium and zirconium elements in oral mucosa around healthy dental implants: a case-control pilot study. Clin Oral Investig 2023; 27:4715-4726. [PMID: 37270723 PMCID: PMC10415439 DOI: 10.1007/s00784-023-05099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Metallic particles are detected in different sites of the oral cavity, mainly in patients with peri-implantitis lesions. The aim of this pilot study was to analyze the levels of titanium and zirconium elements in the oral mucosa around healthy implants and to investigate the impact of titanium exogenous contamination on the measurements. MATERIALS AND METHODS Forty-one participants were included in this three-phase study. Two groups of subjects were defined according to presence of titanium or zirconia implants (n: 20) or without any implants nor metallic restorations (n:21). Thirteen patients (n: 5 with zirconia implant; n: 3 with titanium implants; n: 5 control group) took part to the first part designed to optimize and validate the method of detecting titanium (Ti) and zirconium (Zr) elements in the oral mucosa and gingival tissues by the Inductively Coupled Plasma Mass Spectrometry (ICPMS). The second phase compared the levels of Ti and Zr concentrations in patients with implants (n: 12) and without implants (n: 6) who were controlled for their intake of titanium dioxide (TiO2). The last step included ten control subjects without any metallic devices to measure the concentration of Ti and Zr before and after having candies containing TiO2. RESULTS In the first phase, concentrations of Ti and Zr were below the limit of detection (LOD) in most cases, 0.18 μg/L and 0.07 μg/L respectively. In the titanium group, two out of three subjects displayed concentrations above the LOD, 0.21 μg/L and 0.66 μg/L. Zr element was only found in patients with zirconia implants. After controlling the intake of TiO2, all concentrations of Ti and Zr were below the limit of quantification (LOQ). Moreover, in patients with no implants, the Ti concentration in gingiva cells was superior for 75% of the samples after having a TiO2 diet. CONCLUSIONS Zirconium was only found in patients with zirconia implants, whereas titanium was detected in all groups even in subjects with no titanium implants. Zirconium and titanium elements were not detected in patients who were controlled for their intake of food and their use of toothpaste irrespective of the presence of implants or not. For 70% of the patients, the titanium detection was directly influenced by the intake of TiO2 contained candies. CLINICAL RELEVANCE When analyzing titanium particles, it is necessary to pay attention to the risk of contamination bias brought by external products. When this parameter was controlled, no titanium particles were detected around clinically healthy implants.
Collapse
Affiliation(s)
- Norbert Cionca
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Meyer
- Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sophie Michalet
- Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Emmanuel Varesio
- Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Dena Hashim
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Benea L, Ravoiu Lupu A, Bounegru I, Vizureanu P. Effect of Functional Nanoporous TiO 2 Film Obtained on Ti6Al4V Implant Alloy to Improve Resistance in Biological Solution for Inflammatory Conditions. Int J Mol Sci 2023; 24:ijms24108529. [PMID: 37239875 DOI: 10.3390/ijms24108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The metallic titanium-based biomaterials are sensitive to corrosion-induced degradation in biological fluids in the presence of inflammatory conditions containing reactive oxygen species (ROS). Excess ROS induces oxidative modification of cellular macromolecules, inhibits protein function, and promotes cell death. In addition, ROS could promote implant degradation by accelerating the corrosive attack of biological fluids. The functional nanoporous titanium oxide film is obtained on titanium alloy to study the effect on implant reactivity in biological fluid with reactive oxygen species such as hydrogen peroxide, which are present in inflammations. The TiO2 nanoporous film is obtained by electrochemical oxidation at high potential. The untreated Ti6Al4V implant alloy and nanoporous titanium oxide film are comparatively evaluated for corrosion resistance in biological solution by Hank's and Hank's doped with hydrogen peroxide by electrochemical methods. The results showed that the presence of the anodic layer significantly improved the resistance of the titanium alloy to corrosion-induced degradation in biological solutions under inflammatory conditions.
Collapse
Affiliation(s)
- Lidia Benea
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
| | - Anca Ravoiu Lupu
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 Al. I. Cuza Street, RO-800010 Galati, Romania
| | - Iulian Bounegru
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iasi, RO-700050 Iasi, Romania
| |
Collapse
|
24
|
Domingo MG, Nalli GA, Tasat DR, Olmedo DG. Exfoliated oral mucosa cells as bioindicators of short- and long-term systemic titanium contamination. J Trace Elem Med Biol 2023; 76:127114. [PMID: 36516572 DOI: 10.1016/j.jtemb.2022.127114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Humans are exposed to exogenous sources of titanium-containing particles that can enter the body mainly by inhalation, ingestion, or dermal absorption. Given the widespread use of biomaterials in medicine, the surface of a titanium (Ti) biomedical device is a potential endogenous source of Ti ions and/or Ti-containing particles, such as TiO2 micro-(MPs) and nano-particles (NPs), resulting from biotribocorrosion processes. Ti ions or Ti-containing particles may deposit in epithelial cells of the oral mucosa, and the latter may therefore serve as bioindicators of short and long-term systemic Ti contamination. The aim of the present study was to histologically and quantitatively evaluate the presence of Ti traces in cells exfoliated from the oral mucosa as possible bioindicators of systemic contamination with this metal at short and long-term experimental time points METHODS: Thirty Wistar rats were intraperitoneally injected with a suspension of titanium dioxide (TiO2) (0.16 g/100 g body weight of TiO2 in 5 ml of NaCl 0.9%) using 5 nm NPs (Group: TiO2-NP5; n = 10), 45 µm MPs (Group: TiO2-MP45; n = 10), or vehicle alone (Control group; n = 10). At one and six months post-injection, right-cheek mucosa cells were obtained by exfoliative cytology using a cytobrush; they were spray fixed and stained using Safranin or the Papanicolaou technique. The smears were cytologically evaluated (light microscopy) to determine the presence of particulate material, which was also analyzed microchemically (SEM-EDS). Left-cheek mucosa cells were similarly obtained and re-suspended in 5 ml of PBS (pH: 7.2-7.4); the samples corresponding to each group were pooled together and analyzed spectrometrically (ICP-MS) to determine Ti concentration in each of the studied groups. Blood samples were obtained for histological determination of the presence of particulate material on Safranin-stained blood smears and determination of plasma concentration of Ti by ICP-MS RESULTS: Different size and shape metal-like particles were observed inside and outside epithelial cells in TiO2-NP5 and TiO2-MP45 cytological smears at both one and six months post-injection. EDS analysis showed the presence of Ti in the particles. ICP-MS revealed higher Ti concentrations in both TiO2 injected groups compared to the control group. In addition, Ti concentration did not vary with time or particle size. Monocytes containing particles were observed in blood smears of TiO2-exposed animals one- and six-months post-injection. Plasma levels of Ti were significantly higher in TiO2-NP5- and TiO2-MP45- exposed animals than in controls (p < 0.05), and Ti concentration was significantly higher at one month than at six months in both TiO2-exposed groups (p < 0.05). CONCLUSIONS Cells exfoliated from the oral mucosa could be used as bioindicators of short- and long-term systemic contamination with Ti. Exfoliative cytology could be used as a simple, non-invasive, and inexpensive diagnostic method for monitoring biotribocorrosion of Ti implants and patient clinical follow-up.
Collapse
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina, M. T. de Alvear 2142, 2° A, C1122AAH Buenos Aires, Argentina; Becario de Investigación de la Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Gabriela Alejandra Nalli
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Estomatología, Buenos Aires, Argentina, M. T. de Alvear 2142, 2° A, C1122AAH Buenos Aires, Argentina.
| | - Deborah Ruth Tasat
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, UNSAM Campus Miguelete, 25 de Mayo y Francia, San Martín, B1650HMN Buenos Aires, Argentina; CONICET - Universidad Nacional de San Martín, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), San Martín, Buenos Aires, UNSAM Campus Miguelete, 25 de Mayo y Francia, San Martín, B1650HMN Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina, M. T. de Alvear 2142, 2° A, C1122AAH Buenos Aires, Argentina.
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina, M. T. de Alvear 2142, 2° A, C1122AAH Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina, Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina.
| |
Collapse
|
25
|
Fischer KR, Büchel J, Gubler A, Liu CC, Sahrmann P, Schmidlin PR. Nonsurgical cleaning potential of deep-threaded implants and titanium particle release: A novel in vitro tissue model. Clin Oral Implants Res 2023; 34:416-425. [PMID: 36757141 DOI: 10.1111/clr.14045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVES To measure the efficiency of three cleaning modalities on two implant designs with similar diameters but different thread depths as well as the presence of titanium particles. METHODS Sixty dyed implants (30 × 4.8 apically tapered (ATAP) and 30 × 5.0 fully tapered (FTAP)) were fixed in plastic models. The horizontal bone defects were surrounded with porcine soft tissue. Three instrumentation modalities were used to clean for 150 s: Curette (CUR), ultrasonic scaler (US), and air powder waterjet device (APWJ) with erythritol powder. Afterward, implants were photographed and scanning electron microscopic (SEM) images were taken. Titanium in the soft tissues was quantified in dissolved samples and histologically confirmed. RESULTS For ATAP and FTAP implants, the percentage of the cleaned surface was 26.4 ± 3.0 and 17.1 ± 2.4% for CUR, 33.7 ± 3.8% and 28.1 ± 2.3% for US, and 45.5 ± 4.1% and 24.7 ± 3.8% for APWJ, respectively. SEM images showed significant implant surface changes, especially after instrumentation with CUR and US, whereas APWJ had little to no effect. Most titanium residues were found after cleaning ATAP implants with CUR (152.0 ± 75.5), followed by US (89.5 ± 73.8) and APWJ (0.3 ± 0.8). For the FTAP implants, respective values accounted for 129.5 ± 58.6 μg and 67.0 ± 14.4 μg for CUR and US, respectively. No titanium residues were detected on ATAP with APWJ. CONCLUSION Based on in vitro data, erythritol-powered APWJ still appears to be the most efficient and gentle cleaning method. All three instruments, however, were found to have unprocessed areas depending on different implant designs, hence, clinical relevance for non-surgical approaches remains challenging and warrants further improvement.
Collapse
Affiliation(s)
- Kai R Fischer
- Clinic of Conservative and Preventive Dentistry, University of Zurich, Zurich, Switzerland
| | - Jasmin Büchel
- Clinic of Conservative and Preventive Dentistry, University of Zurich, Zurich, Switzerland
| | - Andrea Gubler
- Clinic of Conservative and Preventive Dentistry, University of Zurich, Zurich, Switzerland
| | - Chun Ching Liu
- Clinic of Conservative and Preventive Dentistry, University of Zurich, Zurich, Switzerland
| | - Philipp Sahrmann
- Clinic for Periodontology, Endodontology and Cariology, University Center of Dental Medicine, University of Basel, Basel, Switzerland
| | - Patrick R Schmidlin
- Clinic of Conservative and Preventive Dentistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Ozkan A, Çakır DA, Tezel H, Sanajou S, Yirun A, Baydar T, Erkekoglu P. Dental Implants and Implant Coatings: A Focus on Their Toxicity and Safety. J Environ Pathol Toxicol Oncol 2023; 42:31-48. [PMID: 36749088 DOI: 10.1615/jenvironpatholtoxicoloncol.2022043467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dental implants are medical devices that are surgically inserted into the patient's jawbone by an orthodontist to act as roots of missing teeth. After the implantation, the maxilla or mandible integrates with the surface of the dental implant. This process, called "osseointegration," is an important period to ensure the long-term use of dental implants and prevent implant failures. Metal implants are the most used implant materials. However, they have disadvantages such as corrosion, metal ion release from metal implant surfaces and associated toxicity. To avoid these adverse effects and improve osseointegration, alternative dental implant materials such as ceramics, polymers, composites, and novel surface modification technologies have been developed. The safety of these materials are also of concern for toxicologists. This review will give general information about dental implant materials, osseointegration and successful implantation process. Moreover, we will focus on the new surface coatings materials for of dental implants and their toxicity and safety concerns will be discussed.
Collapse
Affiliation(s)
- Atakan Ozkan
- TOBB University of Economics and Technology, Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey
| | - Deniz Arca Çakır
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey; Hacettepe University Vaccine Institute, Department of Vaccinology, Ankara, Turkey
| | - Hülya Tezel
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Sonia Sanajou
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Anil Yirun
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey; Çukurova University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Adana, Turkey
| | - Terken Baydar
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Pinar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey; Hacettepe University Vaccine Institute, Department of Vaccinology, Ankara, Turkey
| |
Collapse
|
27
|
Freitag L, Spinell T, Kröger A, Würfl G, Lauseker M, Hickel R, Kebschull M. Dental implant material related changes in molecular signatures in peri-implantitis - A systematic review and integrative analysis of omics in-vitro studies. Dent Mater 2023; 39:101-113. [PMID: 36526446 DOI: 10.1016/j.dental.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Since peri-implantitis differs clinically and histopathologically from periodontitis, implant wear debris is considered to play a role in the destructive processes. This work aims to systematically review if titanium particles affect oral-related cells through changes in molecular signatures (e.g., transcriptome, proteome, epigenome), thereby promoting peri-implantitis. METHODS Leveraging three literature databases (Medline, Embase, Cochrane) a systematic search based on a priori defined PICOs was conducted: '-omics' studies examining titanium exposure in oral-related cells. After risk of bias assessments, lists of differentially expressed genes, proteins, and results of functional enrichment analyses were compiled. The significance of overlapping genes across multiple studies was assessed via Monte Carlo simulation and their ranking was verified using rank aggregation. RESULTS Out of 2104 screened articles we found 12 eligible publications. A significant overlap of gene expression in oral-related cells exposed to titanium particles was found in four studies. Furthermore, changes in biological processes like immune/inflammatory or stress response as well as toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling pathways were linked to titanium in transcriptome and proteome studies. Epigenetic changes caused by titanium were detected but inconsistent. CONCLUSION An influence of titanium implant wear debris on the development and progression of peri-implantitis is plausible but needs to be proven in further studies. Limitations arise from small sample sizes of included studies and insufficient publication of re-analyzable data.
Collapse
Affiliation(s)
- Lena Freitag
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Thomas Spinell
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
| | - Annika Kröger
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
| | | | - Michael Lauseker
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Moritz Kebschull
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK; Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| |
Collapse
|
28
|
AjitSankardas P, Stein SH, Tipton D, Abhyankar V, Morrow BR. Impact of Metal Particles Released during Ultrasonic Scaling of Titanium Surfaces on Human Gingival Fibroblasts. J Long Term Eff Med Implants 2022; 33:9-22. [PMID: 36382700 DOI: 10.1615/jlongtermeffmedimplants.2022043080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Metal particles found in tissues around dental implants have been proposed to play a pathogenic role in peri-implantitis. Ultrasonic scaling has been suggested as a mechanism by which these particles can be inadvertently released into surrounding tissues. Furthermore, risk factors like diabetes can result in exacerbation of this inflammatory condition. The current study aimed to analyze metal particles released from titanium surfaces during ultrasonic scaling and their impact on pro-inflammatory cytokine production by human gingival fibroblasts. METHODS Metal particles generated from ultrasonic scaling of titanium discs using two different tips (metal and poly-etheretherketone tips) were characterized using scanning electron microscopy and elemental analysis. Endotoxin levels and Human gingival fibroblast viability, in the presence commercial and ultrasonically generated particles were determined. Fibroblasts, cultured in high or low glucose growth medium, were incubated with commercial titanium particles or ultrasonically generated particles in the presence or absence of interluekin-1β. Interleukin 6 and interleukin 8 production were then quantified using Enzyme linked immunosorbent assay. RESULTS Analysis of particles after scaling of titanium discs showed significant levels of titanium particles. Commercial titanium particles and generated particles had no effect of fibroblast viability. Endotoxin levels of all particles were too low to stimulate HGF cells. IL-1β significantly stimulated IL-6 and IL-8 production. However, commercial, and generated particles generally had no significant effect on IL- 6 and IL-8 production. CONCLUSION Our study concluded that particles generated during ultrasonic scaling had no significant effect on viability of HGF cells and cytokine production.
Collapse
Affiliation(s)
- Pooja AjitSankardas
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Sidney H Stein
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - David Tipton
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Vrushali Abhyankar
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Brian R Morrow
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| |
Collapse
|
29
|
Gaur S, Agnihotri R, Albin S. Bio-Tribocorrosion of Titanium Dental Implants and Its Toxicological Implications: A Scoping Review. ScientificWorldJournal 2022; 2022:4498613. [PMID: 36312451 PMCID: PMC9616655 DOI: 10.1155/2022/4498613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Bio-tribocorrosion is a phenomenon that combines the essentials of tribology (friction, wear, and lubrication) and corrosion with microbiological processes. Lately, it has gained attention in implant dentistry because dental implants are exposed to wear, friction, and biofilm formation in the corrosive oral environment. They may degrade upon exposure to various microbial, biochemical, and electrochemical factors in the oral cavity. The mechanical movement of the implant components produces friction and wear that facilitates the release of metal ions, promoting adverse oro-systemic reactions. This review describes the bio-tribocorrosion of the titanium (Ti) dental implants in the oral cavity and its toxicological implications. The original research related to the bio-tribo or tribocorrosion of the dental implants was searched in electronic databases like Medline (Pubmed), Embase, Scopus, and Web of Science. About 34 studies included in the review showed that factors like the type of Ti, oral biofilm, acidic pH, fluorides, and micromovements during mastication promote bio-tribocorrosion of the Ti dental implants. Among the various grades of Ti, grade V, i.e., Ti6Al4V alloy, is most susceptible to tribocorrosion. Oral pathogens like Streptococcus mutans and Porphyromonas gingivalis produce acids and lipopolysaccharides (LPS) that cause pitting corrosion and degrade the TiO2. The low pH and high fluoride concentration in saliva hinder passive film formation and promote metal corrosion. The released metal ions promote inflammatory reactions and bone destruction in the surrounding tissues resulting in peri-implantitis, allergies, and hyper-sensitivity reactions. However, further validation of the role of bio-tribocorrosion on the durability of the Ti dental implants and Ti toxicity is warranted through clinical trials.
Collapse
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Rupali Agnihotri
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, India
| | - Sacharia Albin
- Engineering Department, Norfolk State University, Norfolk, VA 23504, USA
| |
Collapse
|
30
|
Ivanovski S, Bartold PM, Huang Y. The role of foreign body response in peri-implantitis: What is the evidence? Periodontol 2000 2022; 90:176-185. [PMID: 35916872 PMCID: PMC9804527 DOI: 10.1111/prd.12456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Historically, there has been broad consensus that osseointegration represents a homeostasis between a titanium dental implant and the surrounding bone, and that the crestal bone loss characteristic of peri-implantitis is a plaque-induced inflammatory process. However, this notion has been challenged over the past decade by proponents of a theory that considers osseointegration an inflammatory process characterized by a foreign body reaction and peri-implant bone loss as an exacerbation of this inflammatory response. A key difference in these two schools of thought is the perception of the relative importance of dental plaque in the pathogenesis of crestal bone loss around implants, with obvious implications for treatment. This review investigates the evidence for a persistent foreign body reaction at osseointegrated dental implants and its possible role in crestal bone loss characteristic of peri-implantitis. Further, the role of implant-related material release within the surrounding tissue, particularly titanium particles and corrosion by-products, in the establishment and progression in peri-implantitis is explored. While it is acknowledged that these issues require further investigation, the available evidence suggests that osseointegration is a state of homeostasis between the titanium implant and surrounding tissues, with little evidence that a persistent foreign body reaction is responsible for peri-implant bone loss after osseointegration is established. Further, there is a lack of evidence for a unidirectional causative role of corrosion by-products and titanium particles as possible non-plaque related factors in the etiology of peri-implantitis.
Collapse
Affiliation(s)
- Sašo Ivanovski
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| | - Peter Mark Bartold
- School of DentistryUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yu‐Sheng Huang
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| |
Collapse
|
31
|
Toledano-Serrabona J, Bosch BM, Díez-Tercero L, Gil FJ, Camps-Font O, Valmaseda-Castellón E, Gay-Escoda C, Sánchez-Garcés MÁ. Evaluation of the inflammatory and osteogenic response induced by titanium particles released during implantoplasty of dental implants. Sci Rep 2022; 12:15790. [PMID: 36138061 PMCID: PMC9500064 DOI: 10.1038/s41598-022-20100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Implantoplasty is a mechanical decontamination technique that consists of removing the threads and polishing and smoothing the dental implant surface. During implantoplasty there is a large release of titanium metal particles that might provoke a proinflammatory response and reduce the viability of osteogenic cells. We analyze the inflammatory and osteogenic response induced by Ti6Al4V particles released during implantoplasty and by as-received commercially pure Ti particles. Macrophages stimulated with metal particles obtained by implantoplasty and with as-received Ti particles showed an increased proinflammatory expression of TNF-α and a decreased expression of TGF-β and CD206. Regarding cytokine release, there was an increase in IL-1β, while IL-10 decreased. The osteogenic response of Ti6Al4V extracts showed a significant decrease in Runx2 and OC expression compared to the controls and commercially pure Ti extracts. There were no relevant changes in ALP activity. Thus, implantoplasty releases metal particles that seems to induce a pro-inflammatory response and reduce the expression of osteogenic markers.
Collapse
Affiliation(s)
- Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Begoña M Bosch
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - F Javier Gil
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain.
- Faculty of Dentistry, International University of Catalonia, Sant Cugat del Vallès, Spain.
| | - Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mª Ángeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
32
|
Asa'ad F, Thomsen P, Kunrath MF. The Role of Titanium Particles and Ions in the Pathogenesis of Peri-Implantitis. J Bone Metab 2022; 29:145-154. [PMID: 36153850 PMCID: PMC9511127 DOI: 10.11005/jbm.2022.29.3.145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Titanium (Ti) particles and ions have been investigated in recent years as important factors in the pathogenesis of peri-implantitis. However, their role in the pathogenesis is yet to be fully understood. A review of pertinent literature was performed in various databases to determine the current position of Ti particles and ions role in the pathogenesis of peri-implantitis. There are several in vitro, preclinical and clinical published studies that have addressed the role of Ti particles and ions in the pathogenesis of peri-implantitis. These studies explored the effect of Ti particles and ions in the pathogenesis of peri-implantitis with respect to foreign body reaction, cellular response, epigenetic mechanisms, namely DNA methylation, and the oral microbiome. Studies have shown that the release of Ti particles/ions during implant insertion, early healing stages, late healing stages, and treatments during peri-implantitis might contribute to peri-implantitis through different mechanisms, such as foreign body reaction, cellular response, DNA methylation, and shaping the oral microbiome by increasing dysbiosis. However, further studies are needed to elucidate the complex interactions between all these mechanisms and Ti particles/ions in the pathogenesis and progression of peri-implantitis.
Collapse
Affiliation(s)
- Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
33
|
Lind KH, Ulvik IM, Berg E, Leknes KN. Reversible, non‐plaque‐induced marginal bone loss around an osseointegrated implant: A case report. Clin Case Rep 2022; 10:e05946. [PMID: 35685828 PMCID: PMC9172590 DOI: 10.1002/ccr3.5946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
This case report documents a non‐plaque‐induced marginal bone loss around an osseointegrated implant. The loss of osseointegration, most likely caused by overload and/or suboptimal distribution of occlusal loading, may be reversed when the loading is reduced by optimally transmitting stress forces to the implant‐to‐bone interface and surrounding bone. Limited crestal bone width and a history of ridge augmentation may make peri‐implant supporting bone vulnerable to occlusal overload. In such cases, the prosthetic restoration should be planned with particular focus on reducing and optimizing the occlusal load.
Collapse
Affiliation(s)
- Kristian H. Lind
- Department of Clinical Dentistry Faculty of Medicine University of Bergen Bergen Norway
| | - Ingvild M. Ulvik
- Department of Clinical Dentistry Faculty of Medicine University of Bergen Bergen Norway
| | - Einar Berg
- Department of Clinical Dentistry – Prosthodontics Faculty of Medicine University of Bergen Bergen Norway
| | - Knut N. Leknes
- Department of Clinical Dentistry – Periodontics Faculty of Medicine University of Bergen Bergen Norway
| |
Collapse
|
34
|
Schick F, Lechner J, Notter F. Linking Dentistry and Chronic Inflammatory Autoimmune Diseases – Can Oral and Jawbone Stressors Affect Systemic Symptoms of Atopic Dermatitis? A Case Report. Int Med Case Rep J 2022; 15:323-338. [PMID: 35782227 PMCID: PMC9242433 DOI: 10.2147/imcrj.s367434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background This case report demonstrates the value of ultrasound measurements, and immunological and toxicological diagnostics in addition to current x-ray imaging procedures to diagnose hidden oral and maxillofacial infections. Using a clear scheme shows the procedure of the authors’ steps. The positive impact on the patient’s dermatological clinical picture is shown. Functional regeneration using metal-free ceramic implants and autologous bone augmentation is demonstrated. After a healing period, a postoperative control took place. Question Are chronic inflammatory and chronic toxic stressors from the oral region affecting the patient’s state of health and dermatological symptoms? Patients and Methods A 52 year old female suffering from neurodermatitis, who had been therapy-resistant for several years, was rehabilitated by oral surgery and prosthetics. Radiological examinations with orthopantomogram (OPG) and three-dimensional imaging (DVT/CBCT) were inconclusive for possible jawbone inflammatory sites. Immunological, toxicological diagnostics and trans-alveolar bone densitometry with ultrasound (TAU), were able to show immunological and toxicological stressors and areas of reduced bone density. Bone densitometry with ultrasound raised the suspicion of silent inflammations in the jawbone with potentially increased cytokine levels. Results For the patient incompatible materials, teeth with increased toxin exposure and surrounding softened, fatty, ischaemic bone was removed. Histologies and cytokine profiles were obtained. The resulting defects were functionally regenerated using ceramic implants and autologous augmentation. The cytokine profiles showed significantly elevated RANTES/CCL5, confirming the need for surgical intervention. The patient’s atopic dermatitis improved significantly in this case. Summary Individualized immunological and toxicological diagnostics and trans-alveolar bone density bone densitometry with ultrasound (TAU) identified immunological and toxicological stressors as well as reduced bone density with increased cytokine levels. A therapy-resistant neurodermatitis improved significantly after treatment. Conclusion This case report illustrates the need for patient-specific and individualized examinations that link dentistry more closely with other medical conditions in order to clarify possible interactions.
Collapse
Affiliation(s)
- Fabian Schick
- Clinic for Integrative Dentistry, Munich, Germany
- Correspondence: Fabian Schick, Clinic for Integrative Dentistry, Gruenwalder Str. 10A, Munich, 81547, Germany, Tel +49 89 697 00 55, Email
| | | | | |
Collapse
|
35
|
The Characterization of Titanium Particles Released from Bone-Level Titanium Dental Implants: Effect of the Size of Particles on the Ion Release and Cytotoxicity Behaviour. MATERIALS 2022; 15:ma15103636. [PMID: 35629663 PMCID: PMC9148149 DOI: 10.3390/ma15103636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
Many studies are being carried out on the particles released during the implantoplasty process in the machining of dental implants to remove bacterial biofilms. However, there are no studies on the release of particles produced by the insertion of bone-level dental implants due to the high compressive frictional loads between the rough titanium implant and the bone tissue. This paper aims to characterize the released particles and determine the release of titanium ions into the physiological environment and their cytocompatibility. For this purpose, 90 dental implants with a neck diameter of 4 mm and a torque of 22 Ncm were placed in 7 fresh cow ribs. The placement was carried out according to the established protocols. The implants had a roughness Ra of 1.92 μm. The arrangement of the particles in the bone tissue was studied by micro-CT, and no particle clusters were observed. The different granulometries of 5, 15, and 30 μm were obtained; the specific surface area was determined by laser diffraction; the topography was determined by scanning electron microcopy; and the particles were chemically analysed by X-ray energy microanalysis. The residual stresses of the particles were obtained by X-ray diffraction using the Bragg-Bentano configuration. The release of titanium ions to the physiological medium was performed using ICP-MS at 1, 3, 7, 14, and 21 days. The cytocompatibility of the particles with HFF-1 fibroblast and SAOS-2 osteoblast cultures was characterized. The results showed that the lowest specific surface area (0.2109 m2/g) corresponds to the particles larger than 30 μm being higher than 0.4969 and 0.4802 m2/g of those that are 5 and 15 μm, respectively, observing in all cases that the particles have irregular morphologies without contamination of the drills used in the surgery. The highest residual stresses were found for the small particles, -395 MPa for the 5 μm particles, and -369 for the 15 μm particles, and the lowest residual stresses were found for the 30 μm particles with values of -267 MPa. In all cases, the residual stresses were compressive. The lowest ion release was for the 30 μm samples, as they have the lowest specific surface area. Cytocompatibility studies showed that the particles are cytocompatible, but it is the smallest ones that are lower and very close to the 70% survival limit in both fibroblasts and osteoblasts.
Collapse
|
36
|
Gürbüz-Urvasızoğlu G, Ataol M, Özgeriş FB. Trace elements released from dental implants with periimplantitis: a cohort study. Ir J Med Sci 2022; 191:2305-2310. [PMID: 35524031 DOI: 10.1007/s11845-022-03020-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pure titanium and Ti6Al4V alloy have been in use as dental implant contemporarily. Trace element release from implant bodies is a possible health problem. Well-healed and osseointegrated intrabony implants are only in contact with bone and blood, but in the case of periimplantitis, the possibility of corrosion and the release of trace elements from dental implant surfaces increases due to contact with external factors. AIMS The aim of this study is to evaluate the trace element levels in the blood serum and saliva of patients who have dental implants with periimplantitis compared with the control group. METHODS This study included 25 patients diagnosed with periimplantitis and 25 participants with healthy osseointegrated implants as the control group. The trace element levels in blood serum and saliva were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and results were analyzed statistically. RESULTS There is no statistically significant difference between groups for saliva samples except the aluminum (Al) levels of the study group are significantly lower than the control group (p < 0.05) and the mercury (Hg) levels of the study group are significantly higher than the control group (p < 0.05). On the other hand, there is a significant decrease in titanium (Ti), chromium (Cr), and iodine (I) in the blood serum samples of the study group (p < 0.05). There is no significant difference between the groups for other measured trace elements in the blood serum (p > 0.05). CONCLUSION There is no statistically significant increase in titanium or aluminum levels in the study group compared with the control group.
Collapse
Affiliation(s)
| | - Mert Ataol
- Private Zoom Dental Clinic, 06530, Ankara, Turkey.
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
37
|
Rakic M, Radunovic M, Petkovic-Curcin A, Tatic Z, Basta-Jovanovic G, Sanz M. Study on the immunopathological effect of titanium particles in peri-implantitis granulation tissue: a case-control study. Clin Oral Implants Res 2022; 33:656-666. [PMID: 35344630 PMCID: PMC9321593 DOI: 10.1111/clr.13928] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Objectives To identify titanium particles (TPs) in biopsy specimens harvested from peri‐implantitis lesions and secondarily to study the histopathological characteristics in peri‐implantitis compared to periodontitis, in order to evaluate whether the presence of TPs could alter respective inflammatory patterns. Material and methods Biopsies containing granulation tissue were harvested during routine surgical treatment in 39 peri‐implantitis cases and 35 periodontitis controls. Serial sections were obtained using titanium‐free microtome blades. The first and last sections of the peri‐implantitis specimens were used for identification of TPs by scanning electron microscopy coupled with dispersive X‐ray spectrometry. Intermediate sections and periodontitis specimens were processed for descriptive histological study using haematoxylin–eosin staining and for immunohistochemical analysis using CD68, IL‐6, Nf‐kB and VEGF markers. Results TPs were identified in all peri‐implantitis specimens as free metal bodies interspersed within granulation tissue. However, presence of macrophages or multinucleated giant cells engulfing the TPs were not identified in any specimen. Peri‐implantitis granulations were characterized by a chronic inflammatory infiltrate rich in neutrophils. About half of peri‐implantitis patients exhibited a subacute infiltrate characterized with lymphocytes interweaved with neutrophils and eosinophils. When compared to periodontitis, peri‐implantitis tissues showed higher proportions of macrophages and a more intense neovascularization, based on significantly higher expression of CD68 and VEGF respectively. Conclusion TPs were identified in all peri‐implantitis specimens, but without evidencing any foreign body reaction suggestive for direct pathological effects of TPs. The peri‐implantitis granulation tissue was characterized by intense neovascularization and presence of a chronic inflammatory infiltrate dominated by plasma cells, neutrophils and macrophages.
Collapse
Affiliation(s)
- Mia Rakic
- Facultad de Odontologia, Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Milena Radunovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | - Mariano Sanz
- Facultad de Odontologia, Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
38
|
A Biocompatible Ultrananocrystalline Diamond (UNCD) Coating for a New Generation of Dental Implants. NANOMATERIALS 2022; 12:nano12050782. [PMID: 35269268 PMCID: PMC8911871 DOI: 10.3390/nano12050782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Implant therapy using osseointegratable titanium (Ti) dental implants has revolutionized clinical dental practice and has shown a high rate of success. However, because a metallic implant is in contact with body tissues and fluids in vivo, ions/particles can be released into the biological milieu as a result of corrosion or biotribocorrosion. Ultrananocrystalline diamond (UNCD) coatings possess a synergistic combination of mechanical, tribological, and chemical properties, which makes UNCD highly biocompatible. In addition, because the UNCD coating is made of carbon (C), a component of human DNA, cells, and molecules, it is potentially a highly biocompatible coating for medical implant devices. The aim of the present research was to evaluate tissue response to UNCD-coated titanium micro-implants using a murine model designed to evaluate biocompatibility. Non-coated (n = 10) and UNCD-coated (n = 10) orthodontic Ti micro-implants were placed in the hematopoietic bone marrow of the tibia of male Wistar rats. The animals were euthanized 30 days post implantation. The tibiae were resected, and ground histologic sections were obtained and stained with toluidine blue. Histologically, both groups showed lamellar bone tissue in contact with the implants (osseointegration). No inflammatory or multinucleated giant cells were observed. Histomorphometric evaluation showed no statistically significant differences in the percentage of BIC between groups (C: 53.40 ± 13% vs. UNCD: 58.82 ± 9%, p > 0.05). UNCD showed good biocompatibility properties. Although the percentage of BIC (osseointegration) was similar in UNCD-coated and control Ti micro-implants, the documented tribological properties of UNCD make it a superior implant coating material. Given the current surge in the use of nano-coatings, nanofilms, and nanostructured surfaces to enhance the biocompatibility of biomedical implants, the results of the present study contribute valuable data for the manufacture of UNCD coatings as a new generation of superior dental implants.
Collapse
|
39
|
Insight Into Corrosion of Dental Implants: From Biochemical Mechanisms to Designing Corrosion-Resistant Materials. CURRENT ORAL HEALTH REPORTS 2022; 9:7-21. [PMID: 35127334 PMCID: PMC8799988 DOI: 10.1007/s40496-022-00306-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Purpose of Review Despite advanced technologies to avoid corrosion of dental implants, the mechanisms toward the release of metals and their role in the onset of peri-implant diseases are still under-investigated. Effective knowledge on the etiopathogenesis of corrosive products and preventive strategies mitigating the risks for surface degradation are thus in dire need. This review aimed to summarize evidence toward biocorrosion in the oral environment and discuss the current strategies targeting the improvement of dental implants and focusing on the methodological and electrochemical aspects of surface treatments and titanium-based alloys. Recent Findings Recent studies suggest the existence of wear/corrosion products may correlate with peri-implantitis progress by triggering microbial dysbiosis, the release of pro-inflammatory cytokines, and animal bone resorption. Furthermore, current clinical evidence demonstrating the presence of metal-like particles in diseased tissues supports their possible role as a risk factor for peri-implantitis. For instance, to overcome the drawback of titanium corrosion, researchers are primarily focusing on developing corrosion-resistant alloys and coatings for dental implants by changing their physicochemical features. Summary The current state-of-art discussed in this review found corrosion products effective in affecting biofilm virulence and inflammatory factors in vitro. Controversial and unstandardized data are limitations, making the premise of corrosion products being essential for peri-implantitis onset. On the other hand, when it comes to the strategies toward reducing implant corrosion rate, it is evident that the chemical and physical properties are crucial for the in vitro electrochemical behavior of the implant material. For instance, it is foreseeable that the formation of films/coatings and the incorporation of some functional compounds into the substrate may enhance the material’s corrosion resistance and biological response. Nevertheless, the utmost challenge of research in this field is to achieve adequate stimulation of the biological tissues without weakening its protective behavior against corrosion. In addition, the translatability from in vitro findings to clinical studies is still in its infancy. Therefore, further accumulation of high-level evidence on the role of corrosion products on peri-implant tissues is expected to confirm the findings of the present review besides the development of better methods to improve the corrosion resistance of dental implants. Furthermore, such knowledge could further develop safe and long-term implant rehabilitation therapy.
Collapse
|
40
|
Effect of the Nature of the Particles Released from Bone Level Dental Implants: Physicochemical and Biological Characterization. COATINGS 2022. [DOI: 10.3390/coatings12020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The placement of bone–level dental implants can lead to the detachment of particles in the surrounding tissues due to friction with the cortical bone. In this study, 60 bone–level dental implants were placed with the same design: 30 made of commercially pure grade 4 titanium and 30 made of Ti6Al4V alloy. These implants were placed in cow ribs following the company’s placement protocols. Particles detached from the dental implants were isolated and their size and specific surface area were characterized. The irregular morphology was observed by scanning electron microscopy. Ion release to the medium was determined at different immersion times in physiological medium. Cytocompatibility studies were performed with fibroblastic and osteoblastic cells. Gene expression and cytokine release were analysed to determine the action of inflammatory cells. Particle sizes of around 15 μM were obtained in both cases. The Ti6Al4V alloy particles showed significant levels of vanadium ion release and the cytocompatibility of these particles is lower than that of commercially pure titanium. Ti6Al4V alloy presents higher levels of inflammation markers (TNFα and Il–1β) compared to that of only titanium. Therefore, there is a trend that with the alloy there is a greater toxicity and a greater pro-inflammatory response.
Collapse
|
41
|
Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Systemic effect of
TiO
2
micro‐ and nanoparticles after acute exposure in a murine model. J Biomed Mater Res B Appl Biomater 2022; 110:1563-1572. [DOI: 10.1002/jbm.b.35017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica Buenos Aires Argentina
- Becario de Investigación de la Universidad de Buenos Aires Buenos Aires Argentina
| | - Melisa Kurtz
- CONICET Buenos Aires Argentina
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología Buenos Aires Argentina
- CONICET ‐ Universidad Nacional de San Martín, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA) San Martín, Buenos Aires Argentina
| | - Guillermo Maglione
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología Buenos Aires Argentina
- CONICET ‐ Universidad Nacional de San Martín, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA) San Martín, Buenos Aires Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología Buenos Aires Argentina
| | | | - Fernando Brites
- CONICET Buenos Aires Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Lipoproteínas Buenos Aires Argentina
| | - Deborah Ruth Tasat
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología Buenos Aires Argentina
- CONICET ‐ Universidad Nacional de San Martín, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA) San Martín, Buenos Aires Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología Buenos Aires Argentina
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica Buenos Aires Argentina
- CONICET Buenos Aires Argentina
| |
Collapse
|
42
|
Wu X, Cai C, Gil J, Jantz E, Al Sakka Y, Padial-Molina M, Suárez-López del Amo F. Characteristics of Particles and Debris Released after Implantoplasty: A Comparative Study. MATERIALS 2022; 15:ma15020602. [PMID: 35057319 PMCID: PMC8779414 DOI: 10.3390/ma15020602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
Titanium particles embedded on peri-implant tissues are associated with a variety of detrimental effects. Given that the characteristics of these detached fragments (size, concentration, etc.) dictate the potential cytotoxicity and biological repercussions exerted, it is of paramount importance to investigate the properties of these debris. This study compares the characteristics of particles released among different implant systems (Group A: Straumann, Group B: BioHorizons and Group C: Zimmer) during implantoplasty. A novel experimental system was utilized for measuring and collecting particles generated from implantoplasty. A scanning mobility particle sizer, aerodynamic particle sizer, nano micro-orifice uniform deposit impactor, and scanning electron microscope were used to collect and analyze the particles by size. The chemical composition of the particles was analyzed by highly sensitive microanalysis, microstructures by scanning electron microscope and the mechanical properties by nanoindentation equipment. Particles released by implantoplasty showed bimodal size distributions, with the majority of particles in the ultrafine size range (<100 nm) for all groups. Statistical analysis indicated a significant difference among all implant systems in terms of the particle number size distribution (p < 0.0001), with the highest concentration in Group B and lowest in Group C, in both fine and ultrafine modes. Significant differences among all groups (p < 0.0001) were also observed for the other two metrics, with the highest concentration of particle mass and surface area in Group B and lowest in Group C, in both fine and ultrafine modes. For coarse particles (>1 µm), no significant difference was detected among groups in terms of particle number or mass, but a significantly smaller surface area was found in Group A as compared to Group B (p = 0.02) and Group C (p = 0.005). The 1 first minute of procedures had a higher number concentration compared to the second and third minutes. SEM-EDS analysis showed different morphologies for various implant systems. These results can be explained by the differences in the chemical composition and microstructures of the different dental implants. Group B is softer than Groups A and C due to the laser treatment in the neck producing an increase of the grain size. The hardest implants were those of Group C due to the cold-strained titanium alloy, and consequently they displayed lower release than Groups A and B. Implantoplasty was associated with debris particle release, with the majority of particles at nanometric dimensions. BioHorizons implants released more particles compared to Straumann and Zimmer. Due to the widespread use of implantoplasty, it is of key importance to understand the characteristics of the generated debris. This is the first study to detect, quantify and analyze the debris/particles released from dental implants during implantoplasty including the full range of particle sizes, including both micro- and nano-scales.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Periodontics, College of Dentistry, University of Oklahoma, Oklahoma City, OK 73117, USA; (X.W.); (E.J.)
| | - Changjie Cai
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma, Oklahoma City, OK 73117, USA;
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n. Sant Cugat del Vallés, 08125 Barcelona, Spain
- Facultat de Odontologia, Universitat Internacional de Catalunya, Josep Trueta s/n. San Cugat del Vallés, 08125 Barcelona, Spain
- Correspondence: (J.G.); (F.S.-L.d.A.)
| | - Elizabeth Jantz
- Department of Periodontics, College of Dentistry, University of Oklahoma, Oklahoma City, OK 73117, USA; (X.W.); (E.J.)
| | | | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
| | | |
Collapse
|
43
|
Shuto T, Mine Y, Makihira S, Nikawa H, Wachi T, Kakimoto K. Alterations to Titanium Surface Depending on the Fluorides and Abrasives in Toothpaste. MATERIALS (BASEL, SWITZERLAND) 2021; 15:51. [PMID: 35009198 PMCID: PMC8746240 DOI: 10.3390/ma15010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Fluoride and abrasives in toothpastes may cause corrosion and deterioration of the titanium used for implants and other prostheses. The purpose of this study was to investigate how the presence or absence and types of fluoride and abrasives affected the titanium surface texture. Brushing with toothpastes was performed on pure-titanium discs using an abrasive testing machine. Unprocessed titanium discs without brushing were used as control samples. Surface roughness, color, and gloss of titanium were measured and the differences compared with the control were analyzed. Additionally, titanium surfaces and abrasives in toothpastes were observed using a scanning electron microscope to compare the surface texture of each sample. Some toothpastes (abrasive+) significantly increased the difference in surface roughness, color, and gloss, compared with ultrapure water. Toothpaste (fluoride+/abrasive+) that had many polygonal abrasive particles led to the largest color differences and exhibited notable scratches and a larger number of contaminant- or corrosion-like black spots. In contrast, brushing with toothpaste without fluoride or abrasives (fluoride-/abrasive-) caused little change to the titanium surface. These results suggest that both fluoride and abrasives in toothpaste used for brushing may be factors that affect surface texture and corrosion resistance of titanium.
Collapse
Affiliation(s)
- Takahiro Shuto
- Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, 1-4-4 Makinohonmachi, Osaka 573-1144, Japan;
| | - Yuichi Mine
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan;
| | - Seicho Makihira
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; (S.M.); (H.N.)
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; (S.M.); (H.N.)
| | - Takanori Wachi
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan;
| | - Kazutoshi Kakimoto
- Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, 1-4-4 Makinohonmachi, Osaka 573-1144, Japan;
| |
Collapse
|
44
|
Willis J, Li S, Crean SJ, Barrak FN. Is titanium alloy Ti-6Al-4 V cytotoxic to gingival fibroblasts-A systematic review. Clin Exp Dent Res 2021; 7:1037-1044. [PMID: 34018703 PMCID: PMC8638288 DOI: 10.1002/cre2.444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/13/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Grade V titanium alloy (Ti-6Al-4 V) is a well-recognized metallic biomaterial for medical implants. There has been some controversy regarding the use of this alloy in medical devices in relation to the toxicity of vanadium. In Dentistry, Ti-6Al-4 V remains prevalent. This systematic review aims to evaluate the effects of Ti-6Al-4 V on cells relevant to oral environments such as gingival fibroblasts. MATERIALS AND METHODS A literature search was undertaken for relevant English language publications in the following databases: Dental and Oral Science, Medline and Web of Science. The electronic search was supplemented with a search of references. RESULTS After application of inclusion and exclusion criteria. A total of eight papers are included in this review. These papers were all in vitro studies and were categorized into whole implant, discs, or implant particles based on the type of test materials used in the studies. CONCLUSION Based on the analyses of the eight included studies in this review, if Ti-6Al-4 V as a material is unchallenged, i.e., as a whole implant in pH neutral environments, there appears to be little effect on fibroblasts. If Ti-6Al-4 V is challenged through corrosion or wear (particle release), the subsequent release of vanadium and aluminium particles has an increased cytotoxic effect in vitro in comparison to commercially pure titanium, hence concerns should be raised in the clinical setting.
Collapse
Affiliation(s)
- Jonathan Willis
- School of DentistryUniversity of Central LancashirePrestonUK
| | - Siwei Li
- Department of MaterialsRoyal School of Mines, Imperial College LondonLondonUK
| | - St John Crean
- School of DentistryUniversity of Central LancashirePrestonUK
| | - Fadi N. Barrak
- School of DentistryUniversity of Central LancashirePrestonUK
| |
Collapse
|
45
|
Kheder W, Al Kawas S, Khalaf K, Samsudin A. Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:182-189. [PMID: 34630776 PMCID: PMC8488597 DOI: 10.1016/j.jdsr.2021.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
Titanium particles as a product of degradation have been detected in periimplant oral tissues and it has been assumed that implants were the source of these particles. Periimplantitis sites had higher concentrations of particles in comparison to healthy implant sites. Several factors have been identified in the degradation of dental implant surface, such as mechanical wear, contact with chemical agents, and the effects of biofilm adhesion. Titanium particles silently prompt the immune-system activation and generate a pro-inflammatory response in macrophages, T lymphocytes and monocytes. During the activation, inflammatory cytokines are released including, granulocyte-macrophage colony-stimulating factor (GM-CSF), prostaglandin, and TNF-α, IL-1β, IL-6. The nanoparticles depict unique features such as high level of biological reactivity and potentially harmful compared to microparticles since they have a relatively greater surface area to volume ratio. Allergic response to titanium as a cause of implant failure has not been well documented. Evidence demonstrating biological complication due to titanium particles release includes peri-implant tissue inflammation that lead terminally to implant loss. There is a biological probability for a relation between the presence of titanium particles and ions, biological complication, and corrosion, but there is no justifiable evidence for unidirectional series of causative actions.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sausan Al Kawas
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Khaled Khalaf
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - A.R. Samsudin
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
46
|
Shafizadeh M, Amid R, Mahmoum M, Kadkhodazadeh M. Histopathological characterization of peri-implant diseases: A systematic review and meta-analysis. Arch Oral Biol 2021; 132:105288. [PMID: 34688133 DOI: 10.1016/j.archoralbio.2021.105288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To conduct a systematic review of the inflammatory elements in peri-implantitis (PI) and peri-implant mucositis (PM) in comparison with healthy peri-implant tissues (HI) and periodontal disease. DESIGN The PubMed, Embase, Web of Science, and Scopus databases were searched up to December 2020. English articles that evaluated human soft tissue biopsies of PI or PM were included. Values reported for the surface area of the infiltrated connective tissue (ICT) were pooled using the random-effect model meta-analysis to estimate the mean (95% CI). RESULTS A total of 33 articles were included. Of 30 studies on PI, the majority evidenced significantly increased vascularization and inflammatory cell counts dominated by plasma cells in PI compared with HI. Studies that compared PI with chronic periodontitis primarily reported more severe inflammatory infiltrates in PI. This was confirmed by the meta-analysis results since the surface area of the ICT was significantly larger in PI (p < 0.001). Only seven studies analyzed the PM lesions and reported increased inflammatory infiltrates and vascularization in PM compared with HI. Based on the meta-analysis results, the surface area of the ICT was 3.00 [1.50, 4.51] mm 2 in PI and 0.23 [0.02, 0.44] mm 2 in PM lesions. Based on the available evidence, presence of foreign body particles considerably increased the inflammatory infiltrate; however, smoking did not have a significant effect. CONCLUSIONS There was controversy regarding the prevalence of various inflammatory cell types in peri-implant diseases; however, a considerably high ICT surface area in PI indicates the aggressive nature of the disease.
Collapse
Affiliation(s)
- Marziyeh Shafizadeh
- Periodontics Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran; Dental Research Centre, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Reza Amid
- Periodontics Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Masoumeh Mahmoum
- Periodontics Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Periodontics Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran; Dental Research Centre, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.
| |
Collapse
|
47
|
Alhamad M, Barão VAR, Sukotjo C, Cooper LF, Mathew MT. Ti-Ions and/or Particles in Saliva Potentially Aggravate Dental Implant Corrosion. MATERIALS 2021; 14:ma14195733. [PMID: 34640130 PMCID: PMC8510105 DOI: 10.3390/ma14195733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
The corrosive titanium products in peri-implant tissues are a potential risk factor for peri-implantitis. There is very limited information available on the effect of the corrosion and wear products on the dental implant corrosion. Therefore, we determined the influence of Ti-ions and Ti-particles on Ti corrosion. Eighteen commercially pure-Ti-grade-2 discs were polished to mirror-shine. Samples were divided into six groups (n = 3) as a function of electrolytes; (A) Artificial saliva (AS), (B) AS with Ti-ions (the electrolyte from group A, after corrosion), (C) AS with Ti-particles 10 ppm (D) AS with Ti-particles 20 ppm, (E) AS with Ti-ions 10 ppm, and (F) AS with Ti-ions 20 ppm. Using Tafel’s method, corrosion potential (Ecorr) and current density (Icorr) were estimated from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data were used to construct Nyquist and Bode plots, and an equivalent electrical circuit was used to assess the corrosion kinetics. The corroded surfaces were examined through a 3D-white-light microscope and scanning electronic microscopy. The data demonstrated that the concentration of Ti-ions and corrosion rate (Icorr) are strongly correlated (r = 0.997, p = 0.046). This study indicated that high Ti-ion concentration potentially aggravates corrosion. Under such a severe corrosion environment, there is a potential risk of increased implant associated adverse tissue reactions.
Collapse
Affiliation(s)
- Mostafa Alhamad
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-903, Brazil;
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Prosthodontics, School of Dental Medicine, Bahçeşehir University, Istanbul 34353, Turkey
- Correspondence: (C.S.); (M.T.M.)
| | - Lyndon F. Cooper
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (C.S.); (M.T.M.)
| |
Collapse
|
48
|
Martin A, Zhou P, Singh BB, Kotsakis GA. Transcriptome-wide Gene Expression Analysis in Peri-implantitis Reveals Candidate Cellular Pathways. JDR Clin Trans Res 2021; 7:415-424. [PMID: 34583558 DOI: 10.1177/23800844211045297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Peri-implantitis is a condition resulting in destructive inflammation in the peri-implant soft tissue barrier. Clinically, it demonstrates vast clinical differences to periodontitis that suggest distinct inflammatory mechanisms. Implant-derived titanium particles (i-TiPs) frequently found around diseased implants appear to alter the microenvironment and confer resistance to antibiotic treatments. Studies in orthopedic implants have demonstrated potent inflammatory responses to i-TiPs involving a variety of cell types in aseptic conditions. Nonetheless, the genetic programs of cells surveilling and supporting the peri-implant soft tissue barrier in response to the combined challenges of biomaterial degradation products and oral bacteria are poorly defined. Thus, we studied gene expression specific to oral peri-implant inflammatory disease. METHODS Peri-implant tissues were collected from healthy or diseased implants (N = 10) according to the 2018 classification criteria. Following RNA extraction and purification, a gene-level view of the transcriptome was obtained via a next-generation transcriptome-wide microarray profiling workflow (Clariom S; Applied Biosystems) that covers >20,000 well-annotated genes. A discovery analysis assessed global differential expression of genes and identified pathways in peri-implant health versus disease. RESULTS Genes involved in the endosomal-lysosomal pathway, such as actin polymerization, were strongly upregulated in diseased tissues (P < .05), proposing increased intracellular activities in response to bacteria and i-TiPs. Cellular respiration pathways involved in oxidative stress were highly transcribed in all peri-implant samples, suggesting that implant-specific factors may trigger a constant state of oxidative stress. CONCLUSION Within the limitations of this discovery study, expressive upregulation of genes in the endosomal-lysosomal and oxidative stress pathway suggests that inflammation related to receptor-driven responses to extracellular signals, such as i-TiPs and pathogens, may have a crucial role in peri-implantitis. Results warrant external replication in validation cohorts. KNOWLEDGE TRANSFER STATEMENT Our findings regarding physiologic processes affected by peri-implantitis could advance knowledge of the mechanisms and consequences of the disease. Understanding the cellular programs that partake in peri-implant inflammation has the potential to translate to novel treatment strategies for patients with peri-implantitis.
Collapse
Affiliation(s)
- A Martin
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, USA
| | - P Zhou
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, USA
| | - B B Singh
- Singh Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, USA
| | - G A Kotsakis
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
49
|
Rasul J, Thakur MK, Maheshwari B, Aga N, Kumar H, Mahajani M. Assessment of Titanium Level in Submucosal Plaque Around Healthy Implants and Implants with Peri-implantitis: A Clinical Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:S383-S386. [PMID: 34447115 PMCID: PMC8375966 DOI: 10.4103/jpbs.jpbs_815_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/04/2022] Open
Abstract
Background The present study focused on assessing the level of titanium in submucosal plaque in the peri-implant area with peri-implantitis in comparison to healthy implants. Methodology Sixty patients with titanium dental implants were recruited. The degree of titanium in submucosal plaque around peri-implantitis and healthy implants was estimated using inductively coupled plasma mass spectrometry. Results The mean ± standard deviation probing depth in Group I was 3.12 ± 1.1 and in Group II was 7.2 ± 2.5; gingival index was 0.64 ± 0.3 and 1.64 ± 0.8 in Group I and Group II, respectively. The plaque index was 0.82 ± 0.2 in Group I and 1.5 ± 0.6 in Group II. The mean plaque mass in Group I was 24.1 ± 3.8 ng/ul and 49.3 ± 6.4 ng/ul in Group II. The mean titanium level in Group I was 0.08 ± 0.02 μg and in Group II was 0.91 ± 0.04 μg. A highly significant difference between both groups was found (P < 0.05). Conclusion There was a significantly higher titanium level in submucosal plaque around dental implants with signs of peri-implantitis as compared to healthy dental implants.
Collapse
Affiliation(s)
- Juzer Rasul
- Reader and HOD of Public Health Dentistry, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, Maharashtra, India
| | - Manoj Kumar Thakur
- Department of Prosthodontics and Crown and Bridge, Vananchal Dental College and Hospital, Garhwa, Jharkhand, India
| | - Barkha Maheshwari
- Dental Surgeon, Bharati Vidyapeeth Dental College and Hospital, Sangli, Maharashtra, India
| | - Nausheen Aga
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, Sharjah, United Arab Emirates
| | - Harsh Kumar
- Department of Dentistry, Patna Medical College and Hospital, Patna, Bihar, India
| | - Monica Mahajani
- Department of Periodontology, Dr. HSRSM Dental College and Hospital, Hingoli, Maharashtra, India
| |
Collapse
|
50
|
Malhotra R, Han Y, Nijhuis CA, Silikas N, Castro Neto AH, Rosa V. Graphene nanocoating provides superb long-lasting corrosion protection to titanium alloy. Dent Mater 2021; 37:1553-1560. [PMID: 34420797 DOI: 10.1016/j.dental.2021.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The presence of metallic species around failed implants raises concerns about the stability of titanium alloy (Ti-6Al-4V). Graphene nanocoating on titanium alloy (GN) has promising anti-corrosion properties, but its long-term protective potential and structural stability remains unknown. The objective was to determine GN's anti-corrosion potential and stability over time. METHODS GN and uncoated titanium alloy (Control) were challenged with a highly acidic fluorinated corrosive medium (pH 2.0) for up to 240 days. The samples were periodically tested using potentiodynamic polarization curves, electrochemical impedance spectroscopy and inductively coupled plasma-atomic emission spectroscopy (elemental release). The integrity of samples was determined using Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy. Statistical analyses were performed with one-sample t-test, paired t-test and one-way ANOVA with Tukey post-hoc test with a pre-set significance level of 5%. RESULTS There was negligible corrosion and elemental loss on GN. After 240 days of corrosion challenge, the corrosion rate and roughness increased by two and twelve times for the Control whereas remained unchanged for GN. The nanocoating presented remarkably high structural integrity and coverage area (>98%) at all time points tested. SIGNIFICANCE Graphene nanocoating protects titanium alloy from corrosion and dissolution over a long period while maintaining high structural integrity. This coating has promising potential for persistent protection of titanium and potentially other metallic alloys against corrosion.
Collapse
Affiliation(s)
- Ritika Malhotra
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Yingmei Han
- Department of Chemistry, National University of Singapore, Singapore.
| | - Christian A Nijhuis
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, Netherlands.
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom.
| | - A H Castro Neto
- Centre for Advanced 2D Materials, National University of Singapore, Singapore.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; Centre for Advanced 2D Materials, National University of Singapore, Singapore.
| |
Collapse
|