1
|
Zhang Z, Liu Y, Yu T, Liu Z. Unraveling the Complex Nexus of Macrophage Metabolism, Periodontitis, and Associated Comorbidities. J Innate Immun 2025; 17:211-225. [PMID: 40058341 PMCID: PMC11968099 DOI: 10.1159/000542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/07/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up. BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up.
Collapse
Affiliation(s)
- Zihan Zhang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,
| | - Tian Yu
- Department of Stomatology, Nanbu Country People's Hospital, Nanchong, China
| | - Zhen Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Lafleur S, Bodein A, Mbuya Malaïka Mutombo J, Mathieu A, Joly Beauparlant C, Minne X, Chandad F, Droit A, Houde VP. Multi-Omics Data Integration Reveals Key Variables Contributing to Subgingival Microbiome Dysbiosis-Induced Inflammatory Response in a Hyperglycemic Microenvironment. Int J Mol Sci 2023; 24:ijms24108832. [PMID: 37240180 DOI: 10.3390/ijms24108832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Subgingival microbiome dysbiosis promotes the development of periodontitis, an irreversible chronic inflammatory disease associated with metabolic diseases. However, studies regarding the effects of a hyperglycemic microenvironment on host-microbiome interactions and host inflammatory response during periodontitis are still scarce. Here, we investigated the impacts of a hyperglycemic microenvironment on the inflammatory response and transcriptome of a gingival coculture model stimulated with dysbiotic subgingival microbiomes. HGF-1 cells overlaid with U937 macrophage-like cells were stimulated with subgingival microbiomes collected from four healthy donors and four patients with periodontitis. Pro-inflammatory cytokines and matrix metalloproteinases were measured while the coculture RNA was submitted to a microarray analysis. Subgingival microbiomes were submitted to 16s rRNA gene sequencing. Data were analyzed using an advanced multi-omics bioinformatic data integration model. Our results show that the genes krt76, krt27, pnma5, mansc4, rab41, thoc6, tm6sf2, and znf506 as well as the pro-inflammatory cytokines IL-1β, GM-CSF, FGF2, IL-10, the metalloproteinases MMP3 and MMP8, and bacteria from the ASV 105, ASV 211, ASV 299, Prevotella, Campylobacter and Fretibacterium genera are key intercorrelated variables contributing to periodontitis-induced inflammatory response in a hyperglycemic microenvironment. In conclusion, our multi-omics integration analysis unveiled the complex interrelationships involved in the regulation of periodontal inflammation in response to a hyperglycemic microenvironment.
Collapse
Affiliation(s)
- Sarah Lafleur
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Joanna Mbuya Malaïka Mutombo
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Alban Mathieu
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Charles Joly Beauparlant
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Xavier Minne
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Fatiha Chandad
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Vanessa P Houde
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Anitua E, Alkhraisat MH, Eguia A. On Peri-Implant Bone Loss Theories: Trying To Piece Together the Jigsaw. Cureus 2023; 15:e33237. [PMID: 36733558 PMCID: PMC9890078 DOI: 10.7759/cureus.33237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to explore the plausibility of new theories on the etiopathogenesis of marginal bone loss (MBL) and peri-implantitis (PI) and to discuss possible underlying pathogenic mechanisms. The former concept of osteointegration of dental implants can now be conceptualized as a foreign body response histologically characterized by a bony demarcation in combination with chronic inflammation. Different risk factors can provoke additional inflammation and, therefore, pro-inflammatory cytokine release in soft tissues and bone, leading to an overpass of the threshold of peri-implant bone defensive and regenerative capacity. Progressive bone loss observed in MBL and PI is ultimately due to a localized imbalance in the receptor activator of nuclear factor kappaB ligand (RANKL)/Receptor activator of nuclear factor κ B (RANK)/osteoprotegerin (OPG) pathway in favor of increased catabolic activity. The genetic background and the severity and duration of the risk factors could explain differences between individuals in the threshold needed to reach an imbalanced scenario. MBL and PI pathogenesis could be better explained by the "inflammation-immunological balance" theory rather than a solely "infectious disease" conception. The link between the effect of biofilm and other risk factors leading to an imbalanced foreign body response lies in osteoclast differentiation and activation pathways (over)stimulation.
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Laboratory, Instituto Eduardo Anitua, Vitoria, ESP
| | | | - Asier Eguia
- Estomatology II, University of The Basque Country (Universidad del País Vasco, UPV/Euskal Herriko Unibertsitatea, EHU), Leioa, ESP
| |
Collapse
|
4
|
Masuko K. Glucose as a Potential Key to Fuel Inflammation in Rheumatoid Arthritis. Nutrients 2022; 14:nu14112349. [PMID: 35684149 PMCID: PMC9182926 DOI: 10.3390/nu14112349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose is the most important source of energy and homeostasis. Recent investigations are clarifying that glucose metabolism might be altered in rheumatoid arthritis (RA), which would play a role in the inflammatory phenotype of rheumatoid synovial fibroblasts. It may also play a role in a variety of autoimmune diseases’ pathophysiology by modulating immune responses and modifying autoantigen expressions. The research into glucose and its metabolism could lead to a better understanding of how carbohydrates contribute to the occurrence and duration of RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Kayo Masuko
- Department of Internal Medicine, Akasaka Sanno Medical Center, Tokyo 107-8402, Japan; ; Tel.: +81-3-6230-3701; Fax: +81-3-6230-3702
- Clinical Research Center, International University of Health and Welfare, Tokyo 107-8402, Japan
| |
Collapse
|
5
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383&set/a 912874875+940716348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
7
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021. [DOI: 10.3390/jcm10225383
expr 893869204 + 932072443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
8
|
González-Moles MÁ, Ramos-García P. State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
9
|
Polak D, Sanui T, Nishimura F, Shapira L. Diabetes as a risk factor for periodontal disease-plausible mechanisms. Periodontol 2000 2020; 83:46-58. [PMID: 32385872 DOI: 10.1111/prd.12298] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present narrative review examines the scientific evidence of the biological mechanisms that may link periodontitis and diabetes, as a source of comorbidity. Publications regarding periodontitis and diabetes, in human, animals, and in vitro were screened for their relevance. Periodontal microbiome studies indicate a possible association between altered glucose metabolism in prediabetes and diabetes and changes in the periodontal microbiome. Coinciding with this, hyperglycemia enhances expression of pathogen receptors, which enhance host response to the dysbiotic microbiome. Hyperglycemia also promotes pro-inflammatory response independently or via the advanced glycation end product/receptor for advanced glycation end product pathway. These processes excite cellular tissue destruction functions, which further enhance pro-inflammatory cytokines expression and alteration in the RANKL/osteoprotegerin ratio, promoting formation and activation of osteoclasts. The evidence supports the role of several pathogenic mechanisms in the path of true causal comorbidity between poorly controlled diabetes and periodontitis. However, further research is needed to better understand these mechanisms and to explore other mechanisms.
Collapse
Affiliation(s)
- David Polak
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Terukazu Sanui
- Section of Periodontology, Division of Oral Rehabilitation, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Lior Shapira
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
10
|
Liu S, Zhou X, Peng X, Li M, Ren B, Cheng G, Cheng L. Porphyromonas gingivalis Promotes Immunoevasion of Oral Cancer by Protecting Cancer from Macrophage Attack. THE JOURNAL OF IMMUNOLOGY 2020; 205:282-289. [PMID: 32471882 DOI: 10.4049/jimmunol.1901138] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
Abstract
The relationship of Porphyromonas gingivalis and oral squamous cell carcinoma (OSCC) has been studied for several years. Previous studies have focused on the direct effect of P. gingivalis on the activities of primary epithelial cells and OSCC cells. However, the immune system is responsible for mediating cancer development, whether P. gingivalis can affect oral cancer immunity has seldom been explored to date. In this study, we investigated the role of P. gingivalis in the immunoevasion of OSCC. We evaluated the effect of P. gingivalis on the phagocytosis of Cal-27 cells (OSCC cell line) by bone marrow-derived macrophages in vitro and studied the effect of P. gingivalis on the growth of OSCC and the polarization of tumor-associated macrophages in vivo. We found that P. gingivalis was able to inhibit the phagocytosis of Cal-27 cells by macrophages, and membrane-component molecules of P. gingivalis, such as proteins, were speculated to be the effector components. In addition, sustained infection with antibiotics-inactivated P. gingivalis promoted OSCC growth in mice and induced the polarization of macrophages into M2 tumor-associated macrophages, which mainly display protumor properties. Transcriptome analysis and quantitative RT-PCR revealed that P. gingivalis infection upregulated the expression of genes encoding protumor molecules in Cal-27 cells (suprabasin, IL-1R2, and CD47) and in macrophages (IL-1α, CCL-3, and CCL-5). Our in vitro and in vivo data suggest that P. gingivalis can promote immunoevasion of oral cancer by protecting cancer from macrophage attack. To our knowledge, the present study reveals a novel mechanism by which P. gingivalis promotes OSCC development.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610017, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Ramenzoni LL, Zuellig RA, Hussain A, Lehmann R, Heumann C, Attin T, Schmidlin PR. Bacterial supernatants elevate glucose-dependent insulin secretion in rat pancreatic INS-1 line and islet β-cells via PI3K/AKT signaling. Mol Cell Biochem 2018; 452:17-27. [PMID: 30039349 PMCID: PMC6373304 DOI: 10.1007/s11010-018-3408-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
Diabetes and periodontitis are considered associated chronic diseases, and hyperinsulinemia in prediabetes has been shown to be present in normoglycemic animals with periodontitis. As periodontal bacterial species are significant sources of endotoxemia and may directly stimulate insulin secretion, we hypothesized that increased bacterial virulence may exert an adverse effect on rat pancreatic β-cell function via PI3K/AKT signaling. INS-1 cells and isolated pancreatic islets were cultured separately with the following supernatants: Streptococcus anginosus, Streptococcus mutans, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis (P.g), and Treponema denticola (T.d). Supernatants were purified from single bacterial cultures and prepared at different dilutions (100 pg/ml, 50 ng/ml, 200 ng/ml, and 500 ng/ml) to challenge INS-1 and islets. Gene expression (IL-1β, TNFα, IL-6, TLR2, TLR4, Ins1, and Ins2) and insulin secretion were measured. The results showed upregulation of gene expression up to 5.5-fold, not only as a result of the different dilutions used, but also due to bacterial virulence (p < 0.05). P.g and T.d supernatants demonstrated an increase in insulin secretion to fivefold at hypo- and hyperglycemia, yet stimulation from hypo- to hyperglycemia stays in the same ratio. Activation of TLR4/PI3K/AKT signaling by supernatants in INS-1 cells resulted in increased IL-1β, TNFα, IL-6 gene expression levels, and AKT phosphorylation, which were abolished by TLR4 and PI3K/AKT signaling inhibitor. We demonstrated that bacterial supernatants derived from gram-negative species increasingly stimulate insulin secretion in β-cells and TLR4 may promote inflammation by activating the PI3K/AKT signaling pathway to induce pro-inflammatory molecules. Bacterial species, depending on their virulence, appear to play a role in the relationship between periodontitis and prediabetes by promoting insulin resistance and β-cell compensatory response.
Collapse
Affiliation(s)
- Liza L Ramenzoni
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Richard A Zuellig
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Abbas Hussain
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Roger Lehmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Christian Heumann
- Department for Statistics, Ludwig-Maximilians-University Munich, Theresienstrasse 39/I, 80333, Munich, Germany
| | - Thomas Attin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Patrick R Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
12
|
Aoyama N, Suzuki JI, Kobayashi N, Hanatani T, Ashigaki N, Yoshida A, Shiheido Y, Sato H, Izumi Y, Isobe M. Increased Oral Porphyromonas gingivalis Prevalence in Cardiovascular Patients with Uncontrolled Diabetes Mellitus. Int Heart J 2018; 59:802-807. [PMID: 29877308 DOI: 10.1536/ihj.17-480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine the correlation between periodontopathic bacteria and diabetes mellitus (DM) status in cardiovascular disease (CVD) subjects.DM is associated with the progression of periodontitis. Several epidemiological studies have suggested that periodontitis may be a risk factor for CVD. However, no study has compared the periodontal condition between well-controlled and poorly-controlled DM patients with CVD.The subjects were well-controlled (n = 73) or poorly-controlled (n = 39) DM patients with CVD. Blood examinations and dental clinical measurements, including number of teeth, probing pocket depth, bleeding on probing (BOP), and clinical attachment level (CAL) were performed. Periodontopathic bacterial existence was evaluated.Worsened CAL and BOP rate were detected in the uncontrolled DM group compared to the controlled group. We found increased salivary Porphyromonas gingivalis counts in the uncontrolled DM group compared to well-controlled DM subjects.Specific periodontopathic bacterial infection may affect DM condition in CVD patients.
Collapse
Affiliation(s)
- Norio Aoyama
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Naho Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | | | | | - Asuka Yoshida
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Yuka Shiheido
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Hiroki Sato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| |
Collapse
|
13
|
Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 2017; 45:150-166. [PMID: 29280184 DOI: 10.1111/jcpe.12803] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Abstract
AIM To provide an update of the review by Taylor (Journal of Clinical Periodontology, 2013, 40, S113) regarding the scientific evidence of the biological association between periodontitis and diabetes. METHODS Literature searches were performed using MeSH terms, keywords and title words and were published between 2012 and November 2016. All publications were screened for their relevance. The data from the articles were extracted and summarized in tables and a narrative review. RESULTS Small-scale molecular periodontal microbiome studies indicate a possible association between altered glucose metabolism in pre-diabetes and diabetes and changes in the periodontal microbiome, with no evidence for casual relationships. Clinical and animal studies found elevated gingival levels of IL1-β, TNF-α, IL-6, RANKL/OPG and oxygen metabolites in poorly controlled diabetes. In addition, individuals with diabetes and periodontitis exhibit high levels of circulating TNF-α, CRP and mediators of oxidative stress, and successful periodontal treatment reduces their levels. CONCLUSIONS The elevated pro-inflammatory factors in the gingiva of patients with poorly controlled diabetes suggest a biological pathway that may aggravate periodontitis. Some evidence suggests that the systemic inflammatory burden in periodontitis has the potential to affect diabetes control, but no studies addressed the impact of successful periodontal therapy on the pathophysiological mechanisms involved in systemic complications of diabetes.
Collapse
Affiliation(s)
- David Polak
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
14
|
Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways. Sci Rep 2017; 7:16479. [PMID: 29184072 PMCID: PMC5705677 DOI: 10.1038/s41598-017-16008-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. ROS were determined with a DCFDA kit, and cytokine concentrations were measured with ELISA assay kits. Protein production was examined by immunohistochemical staining and Western blot, and gene expression was observed through RT-qPCR. Results revealed that ADM significantly reduced LPS-induced cytotoxicity, and pretreatment with ADM significantly suppressed ROS overproduction and decreased 4-HNE and 8-OHdG expression levels and concentrations. ADM pretreatment also significantly attenuated the overactivation of enzymatic antioxidants, namely, superoxide dismutase, catalase, thioredoxin reductase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. ADM supplementation reversed the significantly increased gene expression levels and concentrations of TNF-α, IL-1β, TGF-β1, MCP-1 and MIF. ADM pretreatment significantly inhibited the gene expression and protein production of TLR-2 and 4. Furthermore, ADM pretreatment markedly reduced the phosphorylation of JNK, ERK 1/2 and p38, phosphorylation and degradation of IκBα and nuclear translocation of p65. Our findings demonstrated that ADM protects Leydig cells from LPS-induced oxidative stress and inflammation, which might be associated with MAPK/NF-κB signalling pathways.
Collapse
|
15
|
Lipopolysaccharide-induced suppression of periodontal ligament cell proliferation and apoptosis are strengthened under high glucose conditions. Arch Oral Biol 2017; 79:70-76. [DOI: 10.1016/j.archoralbio.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022]
|
16
|
Chiu HC, Fu MMJ, Yang TS, Fu E, Chiang CY, Tu HP, Chin YT, Lin FG, Shih KC. Effect of high glucose,Porphyromonas gingivalislipopolysaccharide and advanced glycation end-products on production of interleukin-6/-8 by gingival fibroblasts. J Periodontal Res 2016; 52:268-276. [DOI: 10.1111/jre.12391] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 01/10/2023]
Affiliation(s)
- H-C. Chiu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - M. M-J. Fu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - T-S. Yang
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - E. Fu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - C-Y. Chiang
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - H-P. Tu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - Y-T. Chin
- Institutes for Cancer Biology and Drug Discovery; Taipei Medical University; Taipei Taiwan
| | - F-G. Lin
- School of Public Health; National Defense Medical Center; Taipei Taiwan
| | - K-C. Shih
- Division of Endocrinology & Metabolism; Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Division of Endocrinology & Metabolism; Taipei-Veteran General Hospital; Taipei Taiwan
| |
Collapse
|
17
|
Liu G, Deng J, Zhang Q, Song W, Chen S, Lou X, Zhang P, Pan K. Porphyromonas gingivalisLipopolysaccharide Stimulation of Vascular Smooth Muscle Cells Activates Proliferation and Calcification. J Periodontol 2016; 87:828-36. [DOI: 10.1902/jop.2016.150602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Abstract
The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD.
Collapse
Affiliation(s)
- Kevin A Tompkins
- a Research Unit of Mineralized Tissue, Faculty of Dentistry , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
19
|
Bhat UG, Ilievski V, Unterman TG, Watanabe K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J Periodontol 2014; 85:1629-36. [PMID: 24921432 PMCID: PMC4394373 DOI: 10.1902/jop.2014.140070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND A close association between periodontitis and diabetes has been demonstrated in human cross-sectional studies, but an exact relationship between periodontitis and prediabetes has not been established. Previous studies using animal model systems consistently have shown that hyperinsulinemia occurs in animals with periodontitis compared to animals with healthy periodontium (while maintaining normoglycemia). Because bacterial lipopolysaccharide (LPS) plays an important role in the pathogenesis of periodontitis, we hypothesized that LPS may stimulate insulin secretion through a direct effect on β cell function. To test this hypothesis, pancreatic β cell line MIN6 cells were used to determine the effect of Porphyromonas gingivalis (Pg) LPS on insulin secretion. Furthermore, expression of genes altered by Pg LPS in innate immunity and insulin-signaling pathways was determined. METHODS MIN6 cells were grown in medium with glucose concentration of normoglycemia (5.5 mM). Pg LPS was added to each well at final concentrations of 50, 200, and 500 ng/mL. Insulin secretion was measured using enzyme-linked immunosorbent assay. Gene expression levels altered by Pg LPS were determined by polymerase chain reaction (PCR) array for mouse innate and adaptive immunity response and mouse insulin-signaling pathways, and results were confirmed for specific genes of interest by quantitative PCR. RESULTS Pg LPS stimulated insulin secretion in the normoglycemic condition by ≈1.5- to 3.0-fold depending on the concentration of LPS. Pg LPS treatment altered the expression of several genes involved in innate and adaptive immune response and insulin-signaling pathway. Pg LPS upregulated the expression of the immune response-related genes cluster of differentiation 8a (Cd8a), Cd14, and intercellular adhesion molecule-1 (Icam1) by about two-fold. LPS also increased the expression of two insulin signaling-related genes, glucose-6-phosphatase catalytic subunit (G6pc) and insulin-like 3 (Insl3), by three- to four-fold. CONCLUSIONS We have demonstrated for the first time that Pg LPS stimulates insulin secretion by pancreatic β cell line MIN cells. Pg LPS may have significant implications on the development of β cell compensation and insulin resistance in prediabetes in individuals with periodontitis.
Collapse
Affiliation(s)
- Uppoor G. Bhat
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| | - Vladimir Ilievski
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| | - Terry G. Unterman
- Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Keiko Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
20
|
Kayal RA. The role of osteoimmunology in periodontal disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:639368. [PMID: 24151615 PMCID: PMC3789307 DOI: 10.1155/2013/639368] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/26/2022]
Abstract
Periodontal disease is a pathological condition that involves inflammation of the tooth supporting structures. It occurs in response to the presence of bacterial plaque on the tooth structure. The host defense system, including innate and adaptive immunity, is responsible for combating the pathologic bacteria invading the periodontal tissue. Failure to eradicate the invading pathogens will result in a continuous state of inflammation where inflammatory cells such as lymphocytes, PMNs, and macrophages will continue to produce inflammatory mediators in an effort to destroy the invaders. Unfortunately, these inflammatory mediators have a deleterious effect on the host tissue as well as foreign microbes. One of the effects of these mediators on the host is the induction of matrix degradation and bone resorption through activation of proteases and other inflammatory mediators that activate osteoclasts.
Collapse
Affiliation(s)
- Rayyan A. Kayal
- Department of Oral Basic and Clinical Science, King Abdulaziz University Faculty of Dentistry, P.O. Box 3738, Jeddah 21481, Saudi Arabia
| |
Collapse
|