1
|
Saadeldin IM, Ehab S, Cho J. Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation. Biomark Res 2023; 11:77. [PMID: 37633948 PMCID: PMC10464313 DOI: 10.1186/s40364-023-00518-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Energy Sources for Exosome Communication in a Cancer Microenvironment. Cancers (Basel) 2022; 14:cancers14071698. [PMID: 35406470 PMCID: PMC8996881 DOI: 10.3390/cancers14071698] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Exosomal communication in the tumor microenvironment plays a crucial role in cancer development, progression, and metastasis, and is achieved by either short-distance communication with neighboring cells or long-distance communication with distant organs. Nevertheless, how exosomes gain energy to establish such communication and the different sources of energy are unclear. Recently, a handful of studies have demonstrated the presence of mitochondria, adenosine triphosphate, and glycolytic enzymes, which may serve as potential energy sources for exosomes. This review clarifies how exosomes maintain their structural integrity and stability during their intracellular communication, and reviews evidence of their energy source. Abstract Exosomes are crucial extracellular vesicles (EVs) with a diameter of approximately 30–200 nm. They are released by most cell types in their extracellular milieu and carry various biomolecules, including proteins and nucleic acids. Exosomes are increasingly studied in various diseases, including cancer, due to their role in local and distant cell–cell communication in which they can promote tumor growth, cancer progression, and metastasis. Interestingly, a tremendous number of exosomes is released by malignant cancer cells, and these are then taken up by autologous and heterologous recipient stromal cells such as immune cells, cancer stem cells, and endothelial cells. All these events demand an enormous amount of energy and require that exosomes remain stable while having the capacity to reach distant sites and cross physical barriers. Nevertheless, there is a dearth of research pertaining to the energy sources of exosomes, and questions remain about how they maintain their motility in the tumor microenvironment (TME) and beyond. Moreover, exosomes can produce adenosine triphosphate (ATP), an important energy molecule required by all cells, and mitochondria have been identified as one of the exosomal cargoes. These findings strengthen the prospect of exosomal communication via transfer of mitochondria and the bioenergetics of target recipient cells. In the TME, the accumulation of ATP and lactate may facilitate the entry of exosomes into cancer cells to promote metastasis, as well as help to target cancer cells at the tumor site. This review highlights how exosomes obtain sufficient energy to thrive in the TME and communicate with distant physiological destinations.
Collapse
|
3
|
D'Arrigo G, Gabrielli M, Scaroni F, Swuec P, Amin L, Pegoraro A, Adinolfi E, Di Virgilio F, Cojoc D, Legname G, Verderio C. Astrocytes-derived extracellular vesicles in motion at the neuron surface: Involvement of the prion protein. J Extracell Vesicles 2021; 10:e12114. [PMID: 34276899 PMCID: PMC8275823 DOI: 10.1002/jev2.12114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Astrocytes-derived extracellular vesicles (EVs) are key players in glia-neuron communication. However, whether EVs interact with neurons at preferential sites and how EVs reach these sites on neurons remains elusive. Using optical manipulation to study single EV-neuron dynamics, we here show that large EVs scan the neuron surface and use neuronal processes as highways to move extracellularly. Large EV motion on neurites is driven by the binding of EV to a surface receptor that slides on neuronal membrane, thanks to actin cytoskeleton rearrangements. The use of prion protein (PrP)-coated synthetic beads and PrP knock out EVs/neurons points at vesicular PrP and its receptor(s) on neurons in the control of EV motion. Surprisingly, a fraction of large EVs contains actin filaments and has an independent capacity to move in an actin-mediated way, through intermittent contacts with the plasma membrane. Our results unveil, for the first time, a dual mechanism exploited by astrocytic large EVs to passively/actively reach target sites on neurons moving on the neuron surface.
Collapse
Affiliation(s)
- Giulia D'Arrigo
- Department of NeuroscienceScuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
- Institute of NeuroscienceCNR National Research Council of ItalyMilanoItaly
| | - Martina Gabrielli
- Institute of NeuroscienceCNR National Research Council of ItalyMilanoItaly
| | - Federica Scaroni
- Institute of NeuroscienceCNR National Research Council of ItalyMilanoItaly
| | - Paolo Swuec
- Department of BiosciencesUniversità degli Studi di MilanoMilanoItaly
- Centro di Ricerca Pediatrica Romeo ed Enrica InvernizziUniversità degli Studi di MilanoMilanoItaly
| | - Ladan Amin
- Department of NeuroscienceScuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
| | - Anna Pegoraro
- Department of Medical SciencesSection of Experimental medicineUniversità degli Studi di FerraraFerraraItaly
| | - Elena Adinolfi
- Department of Medical SciencesSection of Experimental medicineUniversità degli Studi di FerraraFerraraItaly
| | - Francesco Di Virgilio
- Department of Medical SciencesSection of Experimental medicineUniversità degli Studi di FerraraFerraraItaly
| | - Dan Cojoc
- Institute of MaterialsCNR National Research Council of ItalyArea Science Park – BasovizzaTriesteItaly
| | - Giuseppe Legname
- Department of NeuroscienceScuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
| | - Claudia Verderio
- Institute of NeuroscienceCNR National Research Council of ItalyMilanoItaly
| |
Collapse
|
4
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
5
|
Lombardi M, Gabrielli M, Adinolfi E, Verderio C. Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Front Pharmacol 2021; 12:654023. [PMID: 33790800 PMCID: PMC8006391 DOI: 10.3389/fphar.2021.654023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is among the molecules involved in the immune response. It acts as danger signal that promotes inflammation by activating both P2X and P2Y purinergic receptors expressed in immune cells, including microglia, and tumor cells. One of the most important receptors implicated in ATP-induced inflammation is P2X7 receptor (P2X7R). The stimulation of P2X7R by high concentration of ATP results in cell proliferation, inflammasome activation and shedding of extracellular vesicles (EVs). EVs are membrane structures released by all cells, which contain a selection of donor cell components, including proteins, lipids, RNA and ATP itself, and are able to transfer these molecules to target cells. ATP stimulation not only promotes EV production from microglia but also influences EV composition and signaling to the environment. In the present review, we will discuss the current knowledge on the role of ATP in the biogenesis and dynamics of EVs, which exert important functions in physiology and pathophysiology.
Collapse
Affiliation(s)
- Marta Lombardi
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Gabrielli
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
6
|
Mutlu EC, Kaya Ö, Wood M, Mager I, Topkara KÇ, Çamsarı Ç, Birinci Yildirim A, Çetinkaya A, Acarel D, Odabaşı Bağcı J. Efficient Doxorubicin Loading to Isolated Dexosomes of Immature JAWSII Cells: Formulated and Characterized as the Bionanomaterial. MATERIALS 2020; 13:ma13153344. [PMID: 32727156 PMCID: PMC7435586 DOI: 10.3390/ma13153344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Immature dendritic cells (IDc), 'dexosomes', are promising natural nanomaterials for cancer diagnose and therapy. Dexosomes were isolated purely from small-scale-up production by using t25-cell-culture flasks. Total RNA was measured as 1.43 ± 0.33 ng/106 cell. Despite the fact that they possessed a surface that is highly abundant in protein, this did not become a significant effect on the DOX loading amount. Ultrasonication was used for doxorubicin (DOX) loading into the IDc dexosomes. In accordance with the literature, three candidate DOX formulations were designed as IC50 values; dExoIII, 1.8 µg/mL, dExoII, 1.2 µg/mL, and dExoI, 0.6 µg/mL, respectively. Formulations were evaluated by MTT test against highly metastatic A549 (CCL-185; ATTC) cell line. Confocal images of unloaded (naïve) were obtained by CellMaskTM membrane staining before DOX loading. Although, dexosome membranes were highly durable subsequent to ultrasonication, it was observed that dexosomes could not be stable above 70 °C during the SEM-image analyses. dExoIII displayed sustained release profile. It was found that dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) results were in good agreement with each other. Zeta potentials of loaded dexosomes have approximately between -15 to -20 mV; and, their sizes are 150 nm even after ultrasonication. IDcJAWSII dexosomes can be able to be utilized as the "BioNanoMaterial" after DOX loading via ultrasonication technique.
Collapse
Affiliation(s)
- Esra Cansever Mutlu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, Sarıyer, 34398 Istanbul, Turkey
- Scientific Industrial and Technological Application and Research Center, BETUM, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
- Correspondence:
| | - Özge Kaya
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey;
| | - Matthew Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK; (M.W.); (I.M.)
| | - Imre Mager
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK; (M.W.); (I.M.)
| | - Kübra Çelik Topkara
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (K.Ç.T.); (A.Ç.)
| | - Çağrı Çamsarı
- Innovative Food Technologies Development Application and Research Center, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey;
| | - Arzu Birinci Yildirim
- Department of Field Crops, Faculty of Agricultural and Environmental Science, 14030 Bolu, Turkey;
| | - Ayhan Çetinkaya
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (K.Ç.T.); (A.Ç.)
| | - Diğdem Acarel
- Department of Civil Engineering, Faculty of Engineering and Architecture, Beykent University, Sarıyer, 34398 Istanbul, Turkey;
| | - Jale Odabaşı Bağcı
- Department of Interdisciplinary Neuroscience, Health Sciences Institute, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey;
| |
Collapse
|
7
|
Nawaz M, Fatima F. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front Mol Biosci 2017; 4:50. [PMID: 28770210 PMCID: PMC5513920 DOI: 10.3389/fmolb.2017.00050] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil
| |
Collapse
|