1
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
2
|
Faquih TO, Aziz NA, Gardiner SL, Li-Gao R, de Mutsert R, Milaneschi Y, Trompet S, Jukema JW, Rosendaal FR, van Hylckama Vlieg A, van Dijk KW, Mook-Kanamori DO. Normal range CAG repeat size variations in the HTT gene are associated with an adverse lipoprotein profile partially mediated by body mass index. Hum Mol Genet 2023; 32:1741-1752. [PMID: 36715614 PMCID: PMC10448954 DOI: 10.1093/hmg/ddad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 11/26/2023] [Indexed: 01/31/2023] Open
Abstract
Tandem cytosine-adenine-guanine (CAG) repeat sizes of 36 or more in the huntingtin gene (HTT) cause Huntington's disease (HD). Apart from neuropsychiatric complications, the disease is also accompanied by metabolic dysregulation and weight loss, which contribute to a progressive functional decline. Recent studies also reported an association between repeats below the pathogenic threshold (<36) for HD and body mass index (BMI), suggesting that HTT repeat sizes in the non-pathogenic range are associated with metabolic dysregulation. In this study, we hypothesized that HTT repeat sizes < 36 are associated with metabolite levels, possibly mediated through reduced BMI. We pooled data from three European cohorts (n = 10 228) with genotyped HTT CAG repeat size and metabolomic measurements. All 145 metabolites were measured on the same targeted platform in all studies. Multilevel mixed-effects analysis using the CAG repeat size in HTT identified 67 repeat size metabolite associations. Overall, the metabolomic profile associated with larger CAG repeat sizes in HTT were unfavorable-similar to those of higher risk of coronary artery disease and type 2 diabetes-and included elevated levels of amino acids, fatty acids, low-density lipoprotein (LDL)-, very low-density lipoprotein- and intermediate density lipoprotein (IDL)-related metabolites while with decreased levels of very large high-density lipoprotein (HDL)-related metabolites. Furthermore, the associations of 50 metabolites, in particular, specific very large HDL-related metabolites, were mediated by lower BMI. However, no mediation effect was found for 17 metabolites related to LDL and IDL. In conclusion, our findings indicate that large non-pathogenic CAG repeat sizes in HTT are associated with an unfavorable metabolomic profile despite their association with a lower BMI.
Collapse
Affiliation(s)
- Tariq O Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
- Department of Neurology, Bonn University Hospital, Bonn 53175, Germany
| | - Sarah L Gardiner
- Department of Neurology, Amsterdam UMC, Amsterdam 1080 HZ, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Metabolon, Inc., Morrisville, NC 27560, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam 1081 HV, The Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
3
|
Keller CG, Shin Y, Monteys AM, Renaud N, Beibel M, Teider N, Peters T, Faller T, St-Cyr S, Knehr J, Roma G, Reyes A, Hild M, Lukashev D, Theil D, Dales N, Cha JH, Borowsky B, Dolmetsch R, Davidson BL, Sivasankaran R. An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion. Nat Commun 2022; 13:1150. [PMID: 35241644 PMCID: PMC8894458 DOI: 10.1038/s41467-022-28653-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Huntington's Disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the huntingtin (HTT) gene. The mutant HTT (mHTT) protein causes neuronal dysfunction, causing progressive motor, cognitive and behavioral abnormalities. Current treatments for HD only alleviate symptoms, but cerebral spinal fluid (CSF) or central nervous system (CNS) delivery of antisense oligonucleotides (ASOs) or virus vectors expressing RNA-induced silencing (RNAi) moieties designed to induce mHTT mRNA lowering have progressed to clinical trials. Here, we present an alternative disease modifying therapy the orally available, brain penetrant small molecule branaplam. By promoting inclusion of a pseudoexon in the primary transcript, branaplam lowers mHTT protein levels in HD patient cells, in an HD mouse model and in blood samples from Spinal Muscular Atrophy (SMA) Type I patients dosed orally for SMA (NCT02268552). Our work paves the way for evaluating branaplam's utility as an HD therapy, leveraging small molecule splicing modulators to reduce expression of dominant disease genes by driving pseudoexon inclusion.
Collapse
Affiliation(s)
| | - Youngah Shin
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Alex Mas Monteys
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Renaud
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natalia Teider
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Thomas Peters
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Faller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sophie St-Cyr
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Judith Knehr
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alejandro Reyes
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Hild
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Diethilde Theil
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natalie Dales
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jang-Ho Cha
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | - Beverly L Davidson
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
4
|
Trujillo-Del Río C, Tortajada-Pérez J, Gómez-Escribano AP, Casterá F, Peiró C, Millán JM, Herrero MJ, Vázquez-Manrique RP. Metformin to treat Huntington disease: a pleiotropic drug against a multi-system disorder. Mech Ageing Dev 2022; 204:111670. [DOI: 10.1016/j.mad.2022.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
|
5
|
Park S, Luk SHC, Bains RS, Whittaker DS, Chiem E, Jordan MC, Roos KP, Ghiani CA, Colwell CS. Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington's Disease. Front Cardiovasc Med 2022; 8:810810. [PMID: 35004919 PMCID: PMC8739867 DOI: 10.3389/fcvm.2021.810810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Abstract
Individuals affected by Huntington's disease (HD) present with progressive degeneration that results in a wide range of symptoms, including cardiovascular (CV) dysfunction. The huntingtin gene (HTT) and its product are ubiquitously expressed, hence, the cardiomyopathy could also be driven by defects caused by its mutated form (mHTT) in the cardiomyocytes themselves. In the present study, we sought to determine the contribution of the mHTT expressed in the cardiomyocytes to CV symptoms. We utilized the BACHD mouse model, which exhibits many of the HD core symptoms, including CV dysfunction. This model allows the targeted genetic reduction of mHTT expression in the cardiomyocytes while maintaining the expression of the mHTT in the rest of the body. The BACHD line was crossed with a line of mice in which the expression of Cre recombinase is driven by the cardiac-specific alpha myosin-heavy chain (Myh6) promoter. The offspring of this cross (BMYO mice) exhibited a dramatic reduction in mHTT in the heart but not in the striatum. The BMYO mice were evaluated at 6 months old, as at this age, the BACHD line displays a strong CV phenotype. Echocardiogram measurements found improvement in the ejection fraction in the BMYO line compared to the BACHD, while hypertrophy was observed in both mutant lines. Next, we examined the expression of genes known to be upregulated during pathological cardiac hypertrophy. As measured by qPCR, the BMYO hearts exhibited significantly less expression of collagen1a as well as Gata4, and brain natriuretic peptide compared to the BACHD. Fibrosis in the hearts assessed by Masson's trichrome stain and the protein levels of fibronectin were reduced in the BMYO hearts compared to BACHD. Finally, we examined the performance of the mice on CV-sensitive motor tasks. Both the overall activity levels and grip strength were improved in the BMYO mice. Therefore, we conclude that the reduction of mHtt expression in the heart benefits CV function in the BACHD model, and suggest that cardiomyopathy should be considered in the treatment strategies for HD.
Collapse
Affiliation(s)
- Saemi Park
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shu Hon Christopher Luk
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raj S Bains
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel S Whittaker
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emily Chiem
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cristina A Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
7
|
Zhu Y, Shamblin I, Rodriguez E, Salzer GE, Araysi L, Margolies KA, Halade GV, Litovsky SH, Pogwizd S, Gray M, Huke S. Progressive cardiac arrhythmias and ECG abnormalities in the Huntington's disease BACHD mouse model. Hum Mol Genet 2021; 29:369-381. [PMID: 31816043 DOI: 10.1093/hmg/ddz295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease. There is accumulating evidence that HD patients have increased prevalence of conduction abnormalities and compromised sinoatrial node function which could lead to increased risk for arrhythmia. We used mutant Huntingtin (mHTT) expressing bacterial artificial chromosome Huntington's disease mice to determine if they exhibit electrocardiogram (ECG) abnormalities involving cardiac conduction that are known to increase risk of sudden arrhythmic death in humans. We obtained surface ECGs and analyzed arrhythmia susceptibility; we observed prolonged QRS duration, increases in PVCs as well as PACs. Abnormal histological and structural changes that could lead to cardiac conduction system dysfunction were seen. Finally, we observed decreases in desmosomal proteins, plakophilin-2 and desmoglein-2, which have been reported to cause cardiac arrhythmias and reduced conduction. Our study indicates that mHTT could cause progressive cardiac conduction system pathology that could increase the susceptibility to arrhythmias and sudden cardiac death in HD patients.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isaac Shamblin
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Efrain Rodriguez
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Grace E Salzer
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lita Araysi
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine A Margolies
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganesh V Halade
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Silvio H Litovsky
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven Pogwizd
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sabine Huke
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Steventon JJ, Rosser AE, Hart E, Murphy K. Hypertension, Antihypertensive Use and the Delayed-Onset of Huntington's Disease. Mov Disord 2020; 35:937-946. [PMID: 32017180 PMCID: PMC7317197 DOI: 10.1002/mds.27976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Hypertension is a modifiable cardiovascular risk factor implicated in neurodegeneration and dementia risk. In Huntington's disease, a monogenic neurodegenerative disease, autonomic and vascular abnormalities have been reported. This study's objective was to examine the relationship between hypertension and disease severity and progression in Huntington's disease. Methods Using longitudinal data from the largest worldwide observational study of Huntington's disease (n = 14,534), we assessed the relationship between hypertension, disease severity, and rate of clinical progression in Huntington's disease mutation carriers. Propensity score matching was used to statistically match normotensive and hypertensive participants for age, sex, body mass index, ethnicity, and CAG length. Results Huntington's disease patients had a lower prevalence of hypertension compared with age‐matched gene‐negative controls. Huntington's disease patients with hypertension had worse cognitive function, a higher depression score, and more marked motor progression over time compared with Huntington's disease patients without hypertension. However, hypertensive patients taking antihypertensive medication had less motor, cognitive, and functional impairment than Huntington's disease patients with untreated hypertension and a later age of clinical onset compared with untreated hypertensive patients and normotensive individuals with Huntington's disease. Conclusions We report the novel finding that hypertension and antihypertensive medication use are associated with altered disease severity, progression, and clinical onset in patients with Huntington's disease. These findings have implications for the management of hypertension in Huntington's disease and suggest that prospective studies of the symptomatic or disease‐modifying potential of antihypertensives in neurodegenerative diseases are warranted. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jessica J Steventon
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Maindy Road, Cardiff University, Cardiff, Wales, UK
| | - Anne E Rosser
- Neuroscience and Mental Health Research Institute and Brain Research and Intracerebral Neurotherapeutic (BRAIN) unit, School of Medicine, Cardiff University, Cardiff, Wales, UK.,Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Emma Hart
- Bristol Heart Institute (BHI), Clinical Research and Imaging Centre, School of Physiology, Pharmacology and Neuroscience, Bristol University, Bristol, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Maindy Road, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|