1
|
Gani MA, Marhaeny HD, Lee G, Rahmawati SF, Anjalikha PDA, Sugito T, Lebullenger R, Adnyana IK, Lee K, Brézulier D. Ceramic-based 3D printed bone graft in bone tissue reconstruction: a systematic review and proportional meta-analysis of clinical studies. Expert Rev Med Devices 2025:1-19. [PMID: 40227056 DOI: 10.1080/17434440.2025.2492232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION This systematic review and proportional meta-analysis aims to evaluate the postoperative complication rate (CR%) of ceramic-based 3D-printed bone grafts based on the reported scientific articles conducted with human individuals. METHODS MEDLINE and SCOPUS were used as information sources. The synthesis of the study was carried out from studies with human individuals and the use of 3D-printed bone graft-ceramic as inclusion criteria. Cohen's kappa (κ) was calculated for interrater reliability. Qualitative analysis was performed based on the characteristics and outcomes of the individual study, and quantitative analysis was performed using proportional meta-analysis for CR%. RESULTS A total of 1352 records were identified through databases and resulted in 11 included studies (κ = 0.81-1.00) consisting of prospective clinical trials (64.63%), case series (16.67%), and case reports (18.18%). The overall postoperative complication rate was 14.3% (95% Cl: 0.19-53.6). The postoperative complication rate for studies conducted on the cranial defect, the maxillofacial-zygomatic defect, and the tibial-femoral defect was 2.7%, 11.1%, and 15.6%, respectively. This review also highlights common 3D printing techniques, materials, and grafs' characteristics, as well as their clinical applications. CONCLUSIONS Ceramic-based 3D-printed bone grafts show potential as alternatives for bone tissue reconstruction.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Gyubok Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Siti Farah Rahmawati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Putu Diah Apri Anjalikha
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Timothy Sugito
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Ronan Lebullenger
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
| | - I Ketut Adnyana
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Kangwon Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Suwon, Republic of Korea
| | - Damien Brézulier
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
- CHU Rennes, Pole Odontologie, Univ Rennes, Rennes, France
| |
Collapse
|
2
|
Zhou K, Wang X, Han S, Li Y, Xu L, Cao Z, Cheng X, He R, Wang B, Xie H. Preparation and Biological Evaluation of Porous Tantalum Scaffolds Coated with Hydroxyapatite. ACS APPLIED BIO MATERIALS 2024; 7:6780-6790. [PMID: 39289180 DOI: 10.1021/acsabm.4c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Orthopedic implants, such as porous scaffolds, are an effective way to repair bone defects. However, the lack of osseointegration and osteoinduction limits the achievement of an ideal therapeutic effect. This study aimed to prepare hydroxyapatite (HA) coatings for the surface of porous tantalum (Ta) scaffolds and to assess the effectively improved biological activities of the coated scaffolds. The porous Ta scaffolds were prepared by chemical vapor deposition, and then the porous Ta scaffolds were coated with HA via electrochemical deposition. The elements and phase compositions of the coatings were analyzed by energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results showed that the coating covered the whole surfaces of porous Ta scaffolds with a uniform and compact distribution and did not exert any obvious effect on the porous structure. The biological activity of porous Ta scaffolds after surface modification increased and the water contact angle decreased, indicating that hydrophilicity was significantly improved. Cell live/dead staining, cytoskeletal fluorescence staining, and alkaline phosphatase immunofluorescence staining showed that the coating exhibited no cytotoxicity and notably improved cell proliferation, spreading, and osteogenic differentiation. In addition, in vivo experiments in animals have demonstrated that HA-coated porous Ta scaffolds contribute to bone formation. In conclusion, the HA coating notably improves the biological activities of the porous Ta scaffolds, achieving the goal of the present study. The HA coating presents great potential for the modification of porous Ta implants to improve their osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Ke Zhou
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xinyi Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Shun Han
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yada Li
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Longhui Xu
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Zeyang Cao
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xu Cheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Ruijing He
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Benjie Wang
- Affiliated Xinhua Hospital of Dalian University, Dalian 116622, China
| | - Hui Xie
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
3
|
Aryani T, Budiatin AS, Samirah, Maulidina A, Firdaus AI, Gani MA, Nisak K, Khotib J, Syukriya AJ. The administration of bovine hydroxyapatite-alendronate implant accelerates bone defect healing in an osteoporotic rat. Technol Health Care 2023; 31:1747-1757. [PMID: 37092192 DOI: 10.3233/thc-220612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Bone fracture is the main consequence of osteoporosis, which may become a neglected disease. OBJECTIVE This study aims to fabricate bovine hydroxyapatite-gelatine (BHA-GEL) based bone-implant with alendronate (ALE) in vivo. METHODS Wistar rats were used for an osteoporotic animal model induced by ovariectomy. There were three groups: negative control, BHA-GEL implant, and BHA-GEL-ALE implant. Each group performed a defect by drilling the femur (diameter of 2.2 mm and depth of 2 mm). Observations on the closure of bone defects were performed by X-ray radiography at the second and sixth week after surgery. The mechanism of bone healing was observed by using hematoxylin-eosin (HE) staining and immunohistochemical technique with anti-vascular endothelial growth factor (VEGF) and anti-alkaline phosphatase (ALP) antibodies. RESULTS The radiograph examination showed the implanted group had accelerated bone growth. In addition, the osteoblast, osteoclast and osteocyte had accelerated migration to the defect area. Moreover, the immunoreactive score (IRS) of VEGF at the sixth week in the BHA-GEL-ALE group was lower than the other groups. Meanwhile, the IRS of ALP in BHA-GEL-ALE was higher compared to other groups. CONCLUSION The BHA-GEL-ALE implant accelerates the healing of bone defect in the osteoporotic rat by increasing the ALP expression and the total number of cells.
Collapse
Affiliation(s)
- Toetik Aryani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Samirah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aulia Maulidina
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aulia Intan Firdaus
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Apriliani Gani
- Doctoral Programme in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Khoirotin Nisak
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Alvi Jauharotus Syukriya
- Master Programme in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Budiatin AS, Khotib J, Samirah S, Ardianto C, Gani MA, Putri BRKH, Arofik H, Sadiwa RN, Lestari I, Pratama YA, Rahadiansyah E, Susilo I. Acceleration of Bone Fracture Healing through the Use of Bovine Hydroxyapatite or Calcium Lactate Oral and Implant Bovine Hydroxyapatite-Gelatin on Bone Defect Animal Model. Polymers (Basel) 2022; 14:polym14224812. [PMID: 36432941 PMCID: PMC9698469 DOI: 10.3390/polym14224812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Bone grafts a commonly used therapeutic technique for the reconstruction and facilitation of bone regeneration due to fractures. BHA-GEL (bovine hydroxyapatite-gelatin) pellet implants have been shown to be able accelerate the process of bone repair by looking at the percentage of new bone, and the contact between the composite and bone. Based on these results, a study was conducted by placing BHA-GEL (9:1) pellet implants in rabbit femoral bone defects, accompanied by 500 mg oral supplement of BHA or calcium lactate to determine the effectiveness of addition supplements. The research model used was a burr hole defect model with a diameter of 4.2 mm in the cortical part of the rabbit femur. On the 7th, 14th and 28th days after treatment, a total of 48 New Zealand rabbits were divided into four groups, namely defect (control), implant, implant + oral BHA, and implant + oral calcium lactate. Animal tests were terminated and evaluated based on X-ray radiology results, Hematoxylin-Eosin staining, vascular endothelial growth Factor (VEGF), osteocalcin, and enzyme-linked immunosorbent assay (ELISA) for bone alkaline phosphatase (BALP) and calcium levels. From this research can be concluded that Oral BHA supplementation with BHA-GEL pellet implants showed faster healing of bone defects compared to oral calcium lactate with BHA-GEL pellet implants.
Collapse
Affiliation(s)
- Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence:
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Samirah Samirah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Maria Apriliani Gani
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Huzaifah Arofik
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Rizka Nanda Sadiwa
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Indri Lestari
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Erreza Rahadiansyah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Imam Susilo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| |
Collapse
|
5
|
Viryani NM, Soelistijo SA. Perioperative management of closed fracture subtrochanteric femur sinistra in type 2 diabetes mellitus with multiple comorbid: A case report. Int J Surg Case Rep 2022; 98:107536. [PMID: 36029658 PMCID: PMC9428833 DOI: 10.1016/j.ijscr.2022.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/27/2022] Open
|
6
|
Toward Innovation and Policies: Mapping the Demand of Orthopedic Implants in Public Hospital Margono Purwokerto, Central Java, Indonesia. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-3647kg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most of the needs for orthopedic implants in Indonesia are met by the imported product. So that innovation is needed to produce local products that suit the needs of the Indonesian people. The first step before innovating is the need analysis. It is necessary to map and forecast certain implant products to understand which products that are important to be developed before they become a national innovation. In addition, there has not been an article yet that reported data regarding implant product and their forecasting. The main objective of this research is to capture the actual demand product by mapping and forecasting the orthopedic implants in a public hospital. The mapping process was carried out using the descriptive analysis method to organize and summarize the data to get more information about the orthopedic implants that were widely used. In addition, the mapping process is also carried out using the double moving average method to see the trend of demand for orthopedic implants in the future. The data used in this research was the number of orthopedic implants used by the Margono hospital for five years starting from 2016 to 2020. Based on the collected data, forty-two varieties of orthopedic implants had been mapped regarding implant demand. Furthermore, twenty-two of forty-two implants had been analyzed based on several applications that always appeared within five years. This research type of implant is classified into five categories which are screw, plate, wire, rod, and prosthesis. It is found that cortical screw, straight plate, K wire, rod union, and bipolar cemented were noted as the highest demand implant represent their category. The demand forecasting process is carried out for cortical screw, K wire, and rod union. By using the double moving average method and MAPE for measuring the accuracy, it was found that the method has a significant result because the MAPE value is still quite good. The value of MAPE for cortical screw, K wire, and rod union are 0.3985, 1.0726, and 0.4332, respectively. The trend of increasing demand occurs in the product cortical screw and rod union. This data could perform as the recommendation and references leading to the research road map, especially in the orthopedic research field in Indonesia.
Collapse
|
7
|
Pascawinata A, Bakar A. Combination of Nanocrystalline Hydroxyapatite and Injectable Platelet-Rich Fibrin on Bone Graft Materials for Alveolar Bone Preservation. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Alveolar bone resorption is one of post-extraction complications with a reduction in the dimensions and quality of the alveolar bone, which will make it challenging to install dental implants in the future. The resorption can be prevented by preserving the alveolar bone using bone grafts. Nanocrystalline hydroxyapatite (HA) is a widely developed material as a bone graft. However, there are still some limitations because it only has osteoconductive properties. The addition of injectable platelet-rich fibrin to HA can increase this material’s osteoinductive, antibacterial, and anti-inflammatory properties, making it suitable for use as bone graft material for the preservation of alveolar bone.
Collapse
|
8
|
Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals (Basel) 2021; 14:ph14070615. [PMID: 34206843 PMCID: PMC8308723 DOI: 10.3390/ph14070615] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bone defects and periodontal disease are pathological conditions that may become neglected diseases if not treated properly. Hydroxyapatite (HA), along with tricalcium phosphate and bioglass ceramic, is a biomaterial widely applied to orthopedic and dental uses. The in vivo performance of HA is determined by the interaction between HA particles with bone cells, particularly the bone mineralizing cells osteoblasts. It has been reported that HA-induced osteoblastic differentiation by increasing the expression of osteogenic transcription factors. However, the pathway involved and the events that occur in the cell membrane have not been well understood and remain controversial. Advances in gene editing and the discovery of pharmacologic inhibitors assist researchers to better understand osteoblastic differentiation. This review summarizes the involvement of extracellular signal-regulated kinase (ERK), p38, Wnt, and bone morphogenetic protein 2 (BMP2) in osteoblastic cellular regulation induced by HA. These advances enhance the current understanding of the molecular mechanism of HA as a biomaterial. Moreover, they provide a better strategy for the design of HA to be utilized in bone engineering.
Collapse
|