1
|
Kajimura Y, Dong S, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Di Marco F, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Sunilkumar D, Amann JM, Carbone DP, Ahmed A, Fiermonte G, Freitas MA, Lodi A, Del Boccio P, Tessarollo L, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. Cell Death Discov 2025; 11:171. [PMID: 40223093 PMCID: PMC11994786 DOI: 10.1038/s41420-025-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
Affiliation(s)
- Yasuko Kajimura
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Division of Hematology, Diabetes, Metabolism and Endocrinology, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Shuxin Dong
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Oncology Unit, AULSS 5 Polesana, Rovigo, Italy
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Alexandra Thoms
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Pelotonia Summer Fellow, Kenyon College, CAMELOT Program, Gambier, OH, USA
| | - Maria Concetta Cufaro
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Federica Di Marco
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lara Rizzotto
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Liwen Zhang
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Damu Sunilkumar
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Joseph M Amann
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - David P Carbone
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Amer Ahmed
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Mike A Freitas
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, NCI/Center for Cancer Research, NIH, Frederick, MD, 21702, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Kajimura Y, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Marco FD, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Amann J, Carbone DP, Ahmed A, Fiermonte G, Freitas M, Lodi A, Boccio PD, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595416. [PMID: 38826292 PMCID: PMC11142189 DOI: 10.1101/2024.05.22.595416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
|
3
|
Song C, Liu Q, Qin J, Liu L, Zhou Z, Yang H. UCP2 promotes NSCLC proliferation and glycolysis via the mTOR/HIF-1α signaling. Cancer Med 2024; 13:e6938. [PMID: 38217303 PMCID: PMC10905227 DOI: 10.1002/cam4.6938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Metabolic disturbance is a hallmark of cancers. Targeting key metabolic pathways and metabolism-related molecular could be a potential therapeutic approach. Uncoupling protein 2 (UCP2) plays a pivotal part in the malignancy of cancer and its capacity to develop resistance to pharmaceutical interventions. However, it is unclear about the mechanism of how UCP2 acts in the tumor growth and metabolic reprogramming process in non-small cell lung cancer (NSCLC). METHODS Here, we conducted qRT-PCR to investigate the expression of UCP2 in both NSCLC tissues and cell lines. Subsequent functional studies including colony formation assay, CCK-8 assay, and glycolysis assay were conducted to investigate the functions of UCP2 in NSCLC. The regulatory mechanism of UCP2 toward the mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 alpha (HIF-1α) signaling in NSCLC was confirmed through western blotting. RESULTS We observed a significant upregulation of UCP2 in both NSCLC tissues and cell lines. The increased expression of UCP2 has a strong association with a worse outlook. Silencing UCP2 remarkably dampened NSCLC cell proliferation and glycolysis capacities. Mechanically, UCP2 promoted NSCLC tumorigenesis partially via regulating the mTOR/HIF-1α axis. CONCLUSION Taken together, we explored the functions as well as the mechanisms of the UCP2/mTOR/HIF-1α axis in NSCLC progression, uncovering potential biological signatures and targets for NSCLC treatment.
Collapse
Affiliation(s)
- Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Qin
- Changde Hospital, Xiangya School of MedicineCentral South University (The First People's Hospital Of Changde City)ChangdeChina
| | - Lingrui Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhigang Zhou
- Changde Hospital, Xiangya School of MedicineCentral South University (The First People's Hospital Of Changde City)ChangdeChina
| | - Han Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|