1
|
Kumar D, Suchitra, Mundlia J, Yadav SK, Yadav D, Aggarwal N, Chopra H, Kumar V, Kamal MA. Anticancer Potential of Pineapple and its Bioactive Compound Bromelain. Curr Pharm Des 2025; 31:461-483. [PMID: 39279108 DOI: 10.2174/0113816128303910240713180835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 09/18/2024]
Abstract
Various ailments have been treated with pineapple (Ananas comosus (L.) Merr.) throughout medicinal history. Pineapple and its bioactive compound bromelain possess health-promoting benefits. Detailed information on the chemotherapeutic activities of pineapple and its bioactive compound bromelain is provided in this review, which analyses the current literature regarding their therapeutic potential in cancer. Research on disease models in cell cultures is the focus of much of the existing research. Several studies have demonstrated the benefits of pineapple extract and bromelain for in vitro and in vivo cancer models. Preliminary animal model results show promise, but they must be translated into the clinical setting. Research on these compounds represents a promising future direction and may be well-tolerated.
Collapse
Affiliation(s)
- Davinder Kumar
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Suchitra
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Jyoti Mundlia
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Shiv Kumar Yadav
- B.S. Anangpuria Institute of Pharmacy, Faridabad, Haryana 121004, India
| | - Deepika Yadav
- B.S. Anangpuria Institute of Pharmacy, Faridabad, Haryana 121004, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Virender Kumar
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Frontiers Science Center for Disease- related Molecular Network, Institutes for Systems Genetics and West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
2
|
Yang X, Meng D, Jiang N, Wang C, Zhang J, Hu Y, Lun J, Jia R, Zhang X, Sun W. Curcumin-loaded pH-sensitive carboxymethyl chitosan nanoparticles for the treatment of liver cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:628-656. [PMID: 38284334 DOI: 10.1080/09205063.2024.2304949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
In this study, the pH-responsive API-CMCS-SA (ACS) polymeric nanoparticles (NPs) based on 1-(3-amino-propyl) imidazole (API), stearic acid (SA), and carboxymethyl chitosan (CMCS) were fabricated for the effective transport of curcumin (CUR) in liver cancer. CUR-ACS-NPs with various degrees of substitution (DS) were employed to prepare through ultrasonic dispersion method. The effect of different DS on NPs formation was discussed. The obtained CUR-ACS-NPs (DSSA=12.4%) had high encapsulation rate (more than 85%) and uniform particle size (186.2 ± 1.42 nm). The CUR-ACS-NPs showed better stability than the other groups. Drug release from the CUR-ACS-NPs was pH-dependent, and more than 90% or 65% of CUR was released in 48 h in weakly acid medium (pH 5.0 or 6.0, respectively). Additionally, the CUR-ACS-NPs increased the intracellular accumulation of CUR and demonstrated high anticancer effect on HepG2 cells compared with the other groups. CUR-ACS-NPs prolonged the retention time of the drug, and the area under the curve (AUC) increased significantly in vivo. The in vivo antitumor study further revealed that the CUR-ACS-NPs exhibited the capability of inhibiting tumor growth and lower systemic toxicity. Meanwhile, CUR, CUR-CS-NPs, and CUR-ACS-NPs could be detected in the evaluated organs, including tumor, liver, spleen, lung, heart, and kidney in distribution studies. Among them, CUR-ACS-NPs reached the maximum concentration at the tumor site, indicating the tumor-targeting properties. In short, the results suggested that CUR-ACS-NPs could act a prospective drug transport system for effective delivery of CUR in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Dongdong Meng
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Ning Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yanqiu Hu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiaming Lun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Rui Jia
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xueyun Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang 154007, PR China
| |
Collapse
|
3
|
Arumugam P, Ramesh V, Sampathkumar B, Perumalsamy H, Balusamy SR, Suganya K, Balraj S, Nachimuthu SK, Sundaravadivelu S. Integrative transcriptome analysis of triple negative breast cancer profiles for identification of druggable targets. J Biomol Struct Dyn 2023; 41:12106-12119. [PMID: 36617953 DOI: 10.1080/07391102.2022.2164795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
As triple negative breast cancer (TNBC) lacks a specific target, exploration of abnormally expressed genes during the progression of TNBC is important for a better understanding of tumorigenesis and to find a specific target. We intended to figure out genes associated with TNBC, which can provide unique insights into gene dysregulation in TNBC while also pointing to new possible therapeutic targets for TNBC. A meta-analysis of multiple TNBC mRNA profiles was performed to identify consistently differentially expressed genes (CDGs). The pathways involved in modulating these genes were analyzed by MsigDB, and the interaction map was constructed. These CDGs were evaluated for their expression in cell lines, and drugs that could modulate the expression of CDGs were obtained using the connectivity map. CDGs were docked with doxorubicin and anethole, which is a phytocompound. The expression of selected CDGs was analyzed in MDA-MB-231 cells after treatment with doxorubicin and anethole. We found 45 CDGs, out of which 36 were upregulated and 9 were downregulated. MDA-MB-231 cell line was found to have high expression of CDGs, and drug that could modulate the expression of CDGs was doxorubicin. Docking results revealed that anethole and doxorubicin had good interaction with the CDGs especially with the genes AURKA, CDC6, DEPDC1, KIF23, KPNA2, MELK, CTNNB1, FLI1 and E2F1. Gene expression studies of the selected CDGs showed that the synergistic effect of anethole and doxorubicin effectively downregulated the expression. The CDGs identified from multiple cohorts have clinical significance and may be effectively exploited in the targeted therapy for TNBC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Poornima Arumugam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education For Women, Coimbatore, Tamil Nadu, India
| | - Vignesh Ramesh
- International Center for Clinical Research, Friedrich Alexander University, Erlangen-Nurnberb, Germany
| | - Banupriya Sampathkumar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education For Women, Coimbatore, Tamil Nadu, India
| | - Haribalan Perumalsamy
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | | | - Kanagaraj Suganya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education For Women, Coimbatore, Tamil Nadu, India
| | - Sudha Balraj
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education For Women, Coimbatore, Tamil Nadu, India
| | | | - Sumathi Sundaravadivelu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education For Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2021; 20:2789-2800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Mao-Hua Cai
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Cheng-Wu Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Zhi-Ming Hu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| |
Collapse
|
5
|
Deng Z, Xu XY, Yunita F, Zhou Q, Wu YR, Hu YX, Wang ZQ, Tian XF. Synergistic anti-liver cancer effects of curcumin and total ginsenosides. World J Gastrointest Oncol 2020; 12:1091-1103. [PMID: 33133379 PMCID: PMC7579727 DOI: 10.4251/wjgo.v12.i10.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver cancer is the sixth most frequently occurring cancer in the world and the fourth most common cause of cancer mortality. The pathogenesis of liver cancer is closely associated with inflammation and immune response in the tumor microenvironment. New therapeutic agents for liver cancer, which can control inflammation and restore cellular immunity, are required. Curcumin (Cur) is a natural anti-inflammatory drug, and total ginsenosides (TG) are a commonly used immunoregulatory drug. Of note, both Cur and TG have been shown to exert anti-liver cancer effects.
AIM To determine the synergistic immunomodulatory and anti-inflammatory effects of Cur combined with TG in a mouse model of subcutaneous liver cancer.
METHODS A subcutaneous liver cancer model was established in BALB/c mice by a subcutaneous injection of hepatoma cell line. Animals were treated with Cur (200 mg/kg per day), TG (104 mg/kg per day or 520 mg/kg per day), the combination of Cur (200 mg/kg per day) and TG (104 mg/kg per day or 520 mg/kg per day), or 5-fluorouracil combined with cisplatin as a positive control for 21 d. Tumor volume was measured and the protein expression of programmed cell death 1 and programmed cell death 1 ligand 1 (PD-L1), inflammatory indicators Toll like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), and vascular growth-related factors nitric oxide synthases (iNOS) and matrix metalloproteinase 9 were analyzed by Western blot analysis. CD4+CD25+Foxp3+ regulatory T cells (Tregs) were counted by flow cytometry.
RESULTS The combination therapy of Cur and TG significantly inhibited the growth of liver cancer, as compared to vehicle-treated animals, and TG showed dose dependence. Cur combined with TG-520 markedly decreased the protein expression of PD-L1 (P < 0.0001), while CD4+CD25+Foxp3+ Tregs regulated by the PD-L1 signaling pathway exhibited a positive correlation with PD-L1. Cur combined with TG-520 also inhibited the cascade action mediated by NF-κB (P < 0.0001), thus inhibiting the TLR4/NF-κB signalling pathway (P = 0.0088, P < 0.0001), which is associated with inflammation and acts on PD-L1. It also inhibited the NF-κB-MMP9 signalling pathway (P < 0.0001), which is associated with tumor angiogenesis.
CONCLUSION Cur combined with TG regulates immune escape through the PD-L1 pathway and inhibits liver cancer growth through NF-κB-mediated inflammation and angiogenesis.
Collapse
Affiliation(s)
- Zhe Deng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xiao-Yan Xu
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Fenny Yunita
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing Zhou
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yong-Rong Wu
- School of Basic Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yu-Xing Hu
- School of Basic Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhi-Qi Wang
- College of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xue-Fei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|