1
|
Zuntini R, Cattani C, Pedace L, Miele E, Caraffi SG, Gardini S, Ficarelli E, Pizzi S, Radio FC, Barone A, Piana S, Bertolini P, Corradi D, Marinelli M, Longo C, Motolese A, Zuffardi O, Tartaglia M, Garavelli L. Case Report: Sequential postzygotic HRAS mutation and gains of the paternal chromosome 11 carrying the mutated allele in a patient with epidermal nevus and rhabdomyosarcoma: evidence of a multiple-hit mechanism involving HRAS in oncogenic transformation. Front Genet 2023; 14:1231434. [PMID: 37636262 PMCID: PMC10447906 DOI: 10.3389/fgene.2023.1231434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
We report a 7-year-old boy born with epidermal nevi (EN) arranged according to Blaschko's lines involving the face and head, right upper limb, chest, and left lower limb, who developed a left paratesticular embryonal rhabdomyosarcoma at 18 months of age. Parallel sequencing identified a gain-of-function variant (c.37G>C, p.Gly13Arg) of HRAS in both epidermal nevus and tumor but not in leukocytes or buccal mucosal epithelial cells, indicating its postzygotic origin. The variant accounted for 33% and 92% of the total reads in the nevus and tumor DNA specimens, respectively, supporting additional somatic hits in the latter. DNA methylation (DNAm) profiling of the tumor documented a signature consistent with embryonal rhabdomyosarcoma and CNV array analysis inferred from the DNAm arrays and subsequent MLPA analysis demonstrated copy number gains of the entire paternal chromosome 11 carrying the mutated HRAS allele, likely as the result of paternal unidisomy followed by subsequent gain(s) of the paternal chromosome in the tumor. Other structural rearrangements were observed in the tumours, while no additional pathogenic variants affecting genes with role in the RAS-MAPK and PI3K-AKT-MTOR pathways were identified. Our findings provide further evidence of the contribution of "gene dosage" to the multistep process driving cell transformation associated with hyperactive HRAS function.
Collapse
Affiliation(s)
- Roberta Zuntini
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Chiara Cattani
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology, Oncology and Cellular and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology, Oncology and Cellular and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Stefano Gardini
- Dermatology Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Elena Ficarelli
- Dermatology Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Francesca Clementina Radio
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Angelica Barone
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Simonetta Piana
- Department of Oncology and Advanced Technologies, Pathology Unit, Azienda USL, IRCCS, Arcispedale S Maria Nuova, Reggio Emilia, Italy
| | - Patrizia Bertolini
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | - Maria Marinelli
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Advanced Technologies, Unit of Dermatology, Azienda USL, IRCCS, Arcispedale S Maria Nuova, Reggio Emilia, Italy
| | - Alberico Motolese
- Dermatology Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| |
Collapse
|
2
|
Yoon C, Lu J, Jun Y, Suh YS, Kim BJ, Till JE, Kim JH, Keshavjee SH, Ryeom S, Yoon SS. KRAS activation in gastric cancer stem-like cells promotes tumor angiogenesis and metastasis. BMC Cancer 2023; 23:690. [PMID: 37481516 PMCID: PMC10362758 DOI: 10.1186/s12885-023-11170-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Our previous work showed that KRAS activation in gastric cancer cells leads to activation of an epithelial-to-mesenchymal transition (EMT) program and generation of cancer stem-like cells (CSCs). Here we analyze how this KRAS activation in gastric CSCs promotes tumor angiogenesis and metastasis. Gastric cancer CSCs were found to secrete pro-angiogenic factors such as vascular endothelial growth factor A (VEGF-A), and inhibition of KRAS markedly reduced secretion of these factors. In a genetically engineered mouse model, gastric tumorigenesis was markedly attenuated when both KRAS and VEGF-A signaling were blocked. In orthotropic implant and experimental metastasis models, silencing of KRAS and VEGF-A using shRNA in gastric CSCs abrogated primary tumor formation, lymph node metastasis, and lung metastasis far greater than individual silencing of KRAS or VEGF-A. Analysis of gastric cancer patient samples using RNA sequencing revealed a clear association between high expression of the gastric CSC marker CD44 and expression of both KRAS and VEGF-A, and high CD44 and VEGF-A expression predicted worse overall survival. In conclusion, KRAS activation in gastric CSCs enhances secretion of pro-angiogenic factors and promotes tumor progression and metastasis.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yukyung Jun
- Center for Supercomputing Applications, Korea Institute of Science and Technology Information, Division of National, SupercomputingDaejeon, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University, Bundang Hospital, Seongnam, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Bang-Jin Kim
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Jacob E Till
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Kim
- Department of Biological Science, Hyupsung University, Hwasung-Si, Republic of Korea
| | - Sara H Keshavjee
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Sandra Ryeom
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Sam S Yoon
- Department of Surgery, Columbia University Irving Medical Center, Milstein Hospital Building 7-002, 177 Fort Washington Avenue, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Ramalingam PS, Priyadharshini A, Emerson IA, Arumugam S. Potential biomarkers uncovered by bioinformatics analysis in sotorasib resistant-pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 10:1107128. [PMID: 37396909 PMCID: PMC10310804 DOI: 10.3389/fmed.2023.1107128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/11/2023] [Indexed: 07/04/2023] Open
Abstract
Background Mutant KRAS-induced tumorigenesis is prevalent in lung, colon, and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants seem undruggable due to their high-affinity GTP-binding pocket and smooth surface. Structure-based drug design helped in the design and development of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then approved by the FDA. Recent reports state that AMG 510 is becoming resistant in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and lung adenocarcinoma patients, and the crucial drivers involved in this resistance mechanism are unknown. Methods In recent years, RNA-sequencing (RNA-seq) data analysis has become a functional tool for profiling gene expression. The present study was designed to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then subjected to differentially expressed gene (DEG) analysis using the limma package. Then the identified DEGs were subjected to protein-protein interaction (PPI) using the STRING database, followed by cluster analysis and hub gene analysis, which resulted in the identification of probable markers. Results Furthermore, the enrichment and survival analysis revealed that the small unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG 510 resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Conclusion Finally, we conclude that RPS3 is a crucial biomarker in sotorasib resistance which evades apoptosis by MDM2/4 interaction. We also suggest that the combinatorial treatment of sotorasib and RNA polymerase I machinery inhibitors could be a possible strategy to overcome resistance and should be studied in in vitro and in vivo settings in near future.
Collapse
Affiliation(s)
| | - Annadurai Priyadharshini
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Shiels MS, Lipkowitz S, Campos NG, Schiffman M, Schiller JT, Freedman ND, Berrington de González A. Opportunities for Achieving the Cancer Moonshot Goal of a 50% Reduction in Cancer Mortality by 2047. Cancer Discov 2023; 13:1084-1099. [PMID: 37067240 PMCID: PMC10164123 DOI: 10.1158/2159-8290.cd-23-0208] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023]
Abstract
On February 2, 2022, President Biden and First Lady Dr. Biden reignited the Cancer Moonshot, setting a new goal to reduce age-standardized cancer mortality rates by at least 50% over the next 25 years in the United States. We estimated trends in U.S. cancer mortality during 2000 to 2019 for all cancers and the six leading types (lung, colorectum, pancreas, breast, prostate, liver). Cancer death rates overall declined by 1.4% per year from 2000 to 2015, accelerating to 2.3% per year during 2016 to 2019, driven by strong declines in lung cancer mortality (-4.7%/year, 2014 to 2019). Recent declines in colorectal (-2.0%/year, 2010-2019) and breast cancer death rates (-1.2%/year, 2013-2019) also contributed. However, trends for other cancer types were less promising. To achieve the Moonshot goal, progress against lung, colorectal, and breast cancer deaths needs to be maintained and/or accelerated, and new strategies for prostate, liver, pancreatic, and other cancers are needed. We reviewed opportunities to prevent, detect, and treat these common cancers that could further reduce population-level cancer death rates and also reduce disparities. SIGNIFICANCE We reviewed opportunities to prevent, detect, and treat common cancers, and show that to achieve the Moonshot goal, progress against lung, colorectal, and breast cancer deaths needs to be maintained and/or accelerated, and new strategies for prostate, liver, pancreatic, and other cancers are needed. See related commentary by Bertagnolli et al., p. 1049. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Meredith S Shiels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Stanley Lipkowitz
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Nicole G Campos
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - John T Schiller
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Amy Berrington de González
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
5
|
Abstract
The RAS family of proteins is among the most frequently mutated genes in human malignancies. In ovarian cancer (OC), the most lethal gynecological malignancy, RAS, especially KRAS mutational status at codons 12, 13, and 61, ranges from 6-65% spanning different histo-types. Normally RAS regulates several signaling pathways involved in a myriad of cellular signaling cascades mediating numerous cellular processes like cell proliferation, differentiation, invasion, and death. Aberrant activation of RAS leads to uncontrolled induction of several downstream signaling pathways such as RAF-1/MAPK (mitogen-activated protein kinase), PI3K phosphoinositide-3 kinase (PI3K)/AKT, RalGEFs, Rac/Rho, BRAF (v-Raf murine sarcoma viral oncogene homolog B), MEK1 (mitogen-activated protein kinase kinase 1), ERK (extracellular signal-regulated kinase), PKB (protein kinase B) and PKC (protein kinase C) involved in cell proliferation as well as maintenance pathways thereby driving tumorigenesis and cancer cell propagation. KRAS mutation is also known to be a biomarker for poor outcome and chemoresistance in OC. As a malignancy with several histotypes showing varying histopathological characteristics, we focus on reviewing recent literature showcasing the involvement of oncogenic RAS in mediating carcinogenesis and chemoresistance in OC and its subtypes.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anjana Anand
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| | | | | | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Shahab Uddin
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| |
Collapse
|
6
|
Gan Y, Li Y, Zhou H, Wang R. Deciphering Regulatory Proteins of Prenylated Protein via the FRET Technique Using Nitroso-Based Ene-Ligation and Sequential Azidation and Click Reaction. Org Lett 2022; 24:6625-6630. [PMID: 36054498 DOI: 10.1021/acs.orglett.2c02662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the selective incorporations of nitroso species into a wide range of proteins targeting lysine residue(s). The corresponding azo functionalities were formed in a highly selective manner with excellent yields, displaying rather good stability under physiological conditions. Furthermore, the azodation proceeded smoothly in high yields on targeted peptides. Fluorescent and/or dual fluorescent labeling of varied proteins following this protocol have been determined efficiently and selectively. With this established protocol, we aim to determine its usage in the evaluation of the interaction of prenylated proteins with their interacted enzyme(s) via FRET assays. Delightedly, chemically modified proteins with a 1-pyrenyl fluorophore through 254 nm UV irradiation and the sequential azodation and click reaction of protein prenyl functionality, which enable the incorporation of naphthene, indeed increase the fluorescence energy transferred since we observed significantly enhanced absorption located at 218 nm in lysed HEK293T cells and a clearly strengthened greenish fluorescence in living HEK293T cells.
Collapse
Affiliation(s)
- Youfang Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongling Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
7
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
8
|
Ojima I. Recent advances in tumor-targeting chemotherapy drugs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:885-887. [PMID: 35309517 PMCID: PMC8932495 DOI: 10.20517/cdr.2021.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|