1
|
Piao Y, Jung SN, Lim MA, Zheng S, Oh C, Jin YL, Shen S, Nguyen QK, Park SH, Il Kim Y, Kim MG, Kim JW, Ohm S, Chang JW, Won HR, Koo BS. The role of miR-92b-3p in notch signaling and monitoring of oral squamous cell carcinoma. Oncogene 2025; 44:1300-1311. [PMID: 39966557 DOI: 10.1038/s41388-025-03306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Dysregulation of microRNAs (miRNAs) influences diverse hallmarks of cancer, including proliferative signaling, metastasis, and resistance to cell death. We explored the contribution of miR-92b-3p in oral squamous cell carcinoma (OSCC) and its potential as a monitoring biomarker. Analysis of TCGA, GEO, and our own cohort revealed dysregulation of miR-92b-3p in OSCC, which correlated with aggressive tumor characteristics. miR-92b-3p overexpression augmented proliferation and the epithelial-mesenchymal transition in both YD8 and SCC25 cell lines and xenograft models. Mechanically, augmented miR-92b-3p expression suppressed ATXN1 and CPEB3, activating the Notch signaling pathway and thereby promoting metastasis and cisplatin resistance. In our cohort, serum miR-92b-3p expression reflected the disease status, including relapse. Our results suggest that miR-92b-3p might be an onco-miR involved in OSCC through regulating the ATXN1/CPEB3/Notch pathway. These findings provide novel insights for treating and monitoring OSCC.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Mouth Neoplasms/metabolism
- Signal Transduction/genetics
- Animals
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Cell Line, Tumor
- Mice
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Female
- Male
- Biomarkers, Tumor/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Mice, Nude
- Xenograft Model Antitumor Assays
- Cisplatin/pharmacology
Collapse
Affiliation(s)
- Yudan Piao
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sicong Zheng
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yan Li Jin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Shan Shen
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Quoc Khanh Nguyen
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Se-Hee Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Il Kim
- Radiation Oncology, Chungnam National University Sejong Hospital, Daejeon, Republic of Korea
| | - Min-Gyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ji Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Sun Ohm
- Department of Biology, Temple University, Philadelpha, PA, 19122, USA
| | - Jae Won Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| | - Bon Seok Koo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Lin X, Yang H, Cai T, Yang Z, Niu S, Jia H. Polygonum multiflorum Stilbene Glycoside Oligomers induce the ferroptosis of triple negative breast cancer cells. BMC Cancer 2025; 25:676. [PMID: 40229746 PMCID: PMC11995473 DOI: 10.1186/s12885-025-13999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
The quality control testing component and main active ingredient of Polygonum multiflorum Thunb. (P. multiflorum), known as trans-2,3,5,4'-tetrahydroxystilbene 2-O-β-D-glucopyranoside (TSG), exhibits diverse biological activities. In this study, we report, for the first time, the potent ability of TSG to induce ferroptosis in triple negative breast cancer (TNBC) cell lines and to inhibit the proliferation of TNBC cells. Treatment with TSG triggers the production of lipid peroxides, 4-hydroxynonenal (4-HNE), and reactive oxygen species (ROS) in TNBC cells, indicating the induction of ferroptosis. Both in vivo and in vitro experiments confirmed the inhibitory effects of TSG on TNBC cell proliferation and metastasis. Furthermore, we investigated the effects of other stilbene glycoside oligomers, alongside TSG, on TNBC cell lines. These compounds also demonstrated the ability to induce ferroptosis and suppress TNBC cells' proliferation and metastasis. These findings suggest that the induction of ferroptosis by TSG and related compounds could potentially serve as a promising therapeutic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Xiaomeng Lin
- School of Clinical Medicine, Hebei University, Baoding, 071000, China
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Hua Yang
- Department of Medical Oncology - Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Tingting Cai
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Zhangshuo Yang
- School of Clinical Medicine, Hebei University, Baoding, 071000, China
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Siyun Niu
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei University, Baoding, 071000, China.
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
3
|
Montagner A, Arleo A, Suzzi F, D’Assoro AB, Piscaglia F, Gramantieri L, Giovannini C. Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies. Biomolecules 2024; 14:1581. [PMID: 39766289 PMCID: PMC11674819 DOI: 10.3390/biom14121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has shown significant improvement in the survival of patients with hepatocellular carcinoma (HCC) compared to TKIs as first-line treatment. Unfortunately, approximately 30% of HCC exhibits intrinsic resistance to ICIs, making new therapeutic combinations urgently needed. The dysregulation of the Notch signaling pathway observed in HCC can affect immune cell response, reducing the efficacy of cancer immunotherapy. Here, we provide an overview of how Notch signaling regulates immune responses and present the therapeutic rationale for combining Notch signaling inhibition with ICIs to improve HCC treatment. Moreover, we propose using exosomes as non-invasive tools to assess Notch signaling activation in hepatic cancer cells, enabling accurate stratification of patients who can benefit from combined strategies.
Collapse
Affiliation(s)
- Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Antonino B. D’Assoro
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
4
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
5
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|