1
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Haring E, Buescher JM, Apostolova P. Metabolism in hematology: Technological advances open new perspectives on disease biology and treatment. Hemasphere 2025; 9:e70134. [PMID: 40390870 PMCID: PMC12086526 DOI: 10.1002/hem3.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 05/21/2025] Open
Abstract
The term metabolism refers to the multi-faceted biochemical reactions within a cell or an organism that occur to maintain energy homeostasis, cell growth, and oxidative balance. Cells possess a high metabolic plasticity, allowing them to adapt to the dynamic requirements of their functional state and environment. Deregulated cellular metabolism is a hallmark of many diseases, including benign and malignant hematological conditions. In the last decade, multiple technological innovations in the metabolism field have made in-depth metabolic analysis broadly applicable. Such studies are shedding new light on normal and malignant hematopoiesis and open avenues to a better understanding of the biology of hematological diseases. In this review, we will first give a brief overview of central metabolic processes. Furthermore, we discuss the most commonly used methods to study metabolism. We begin by elaborating on the use of next-generation sequencing to detect metabolism-related genomic mutations and study transcriptional signatures. Furthermore, we discuss methods for measuring protein expression, such as mass spectrometry (MS), flow cytometry, and cytometry time-of-flight. Next, we describe the use of nuclear magnetic resonance spectroscopy, MS, and flow cytometry for metabolite quantification. Finally, we highlight functional assays to probe metabolic pathways in real-time. We illustrate how these technologies and their combination have advanced our understanding of the role of metabolism. Our goal is to provide hematologists with a comprehensive guide to modern techniques in metabolism research, their benefits and disadvantages, and how they guide our understanding of disease and potentially future personalized therapy decisions.
Collapse
Affiliation(s)
- Eileen Haring
- Department of BiomedicineUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Joerg M. Buescher
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Petya Apostolova
- Department of BiomedicineUniversity Hospital Basel, University of BaselBaselSwitzerland
- Division of HematologyUniversity Hospital BaselBaselSwitzerland
| |
Collapse
|
3
|
Kang H, Zhang L, Kaadige MR, Valerio M, Hoang DH, Thode T, Weston A, Pathak K, Nigam L, Hansen NP, Lovell B, Shostak Y, Li W, Ghoda L, Li Z, Zhang B, Chen J, Pirrotte P, Kuo YH, Sharma S, Marcucci G, Nguyen LXT. Targeting RNA modification and mitochondrial metabolism cross talk in leukemic stem cells with CDK7 inhibitor TGN-1062. Blood Adv 2025; 9:1900-1906. [PMID: 39908477 PMCID: PMC12008692 DOI: 10.1182/bloodadvances.2024014225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Affiliation(s)
- Hyunjun Kang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Lianjun Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Mohan R. Kaadige
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute, Phoenix, AZ
| | - Melissa Valerio
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Dinh Hoa Hoang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Trason Thode
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute, Phoenix, AZ
| | - Alexis Weston
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute, Phoenix, AZ
| | - Khyatiben Pathak
- Early Detection and Prevention Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Lokesh Nigam
- Early Detection and Prevention Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Nathanial P. Hansen
- Early Detection and Prevention Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Brooke Lovell
- Early Detection and Prevention Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Yuriy Shostak
- Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Lucy Ghoda
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Zhuo Li
- Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Patrick Pirrotte
- Early Detection and Prevention Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Sunil Sharma
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute, Phoenix, AZ
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
| | - Le Xuan Truong Nguyen
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA
- Early Detection and Prevention Division, Translational Genomics Research Institute, Phoenix, AZ
| |
Collapse
|
4
|
Addanki S, Kim L, Stevens A. Understanding and Targeting Metabolic Vulnerabilities in Acute Myeloid Leukemia: An Updated Comprehensive Review. Cancers (Basel) 2025; 17:1355. [PMID: 40282531 PMCID: PMC12025543 DOI: 10.3390/cancers17081355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Acute Myeloid Leukemia (AML) is characterized by aggressive proliferation and metabolic reprogramming that support its survival and resistance to therapy. This review explores the metabolic distinctions between AML cells and normal hematopoietic stem cells (HSCs), emphasizing the role of altered mitochondrial function, oxidative phosphorylation (OXPHOS), and biosynthetic pathways in leukemic progression. AML cells exhibit distinct metabolic vulnerabilities, including increased mitochondrial biogenesis, reliance on glycolysis and amino acid metabolism, and unique signaling interactions that sustain leukemic stem cells (LSCs). These dependencies provide potential therapeutic targets, as metabolic inhibitors have demonstrated efficacy in disrupting AML cell survival while sparing normal hematopoietic cells. We examine current and emerging metabolic therapies, such as inhibitors targeting glycolysis, amino acid metabolism, and lipid biosynthesis, highlighting their potential in overcoming drug resistance. However, challenges remain in translating these strategies into clinical practice due to AML's heterogeneity and adaptability. Further research into AML's metabolic plasticity and precision medicine approaches is crucial for improving treatment outcomes. Understanding and exploiting AML's metabolic vulnerabilities could pave the way for novel, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Sridevi Addanki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Alexandra Stevens
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Xu P, Jiang QH, Fu SH, Lin Y, Zha J, Xu B. Upregulation of LSP1 in AML cells enhances AML resistance to sorafenib and promotes apoptosis in CD8 + T cells. Int Immunopharmacol 2025; 150:114255. [PMID: 39952006 DOI: 10.1016/j.intimp.2025.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy with immunosuppressive tumor microenvironment (TME), which contributes to the development of drug resistance and poor outcomes of immune therapy in AML patients. Therefore, it is imperative to unveil the mechanisms underlying immune suppression in AML TME and identify novel therapeutic targets for immunotherapy. Here, our study identified two immune-related subtypes via RNA-seq analysis, with Cluster 2 significantly associated with multiple biological characteristics and clinical phenotypes, including patients' age, survival and mutational burden. Meanwhile, differential analysis revealed 397 upregulated genes, 75 downregulated genes and 87 prognosis-related differentially expressed genes (DEGs) between Cluster 1 and Cluster 2. Subsequently, LSP1 was identified as the most significant prognostic marker for AML patients. Furthermore, we found that LSP1 expression was significantly correlated with patients' age, class and prognosis and notably affected the cytotoxicity of sorafenib against AML cells. Finally, scRNA-seq analysis revealed a significant correlation between LSP1 and the expression of immune checkpoint molecules in CD8+ T cells and AML cells, influencing the function of total CD8+ T cells as well as CD8+ Teff and CD8+ Tem cells. Collectively, our study revealed that LSP1 is an immune-related marker that greatly correlated with the prognosis, multiple clinical features and biological characteristics of AML patients. Meanwhile, the effects of LSP1 on sorafenib sensitivity and CD8+ T cell apoptosis were also unveiled, shedding light on LSP1 as a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Peng Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Qiu-Hui Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Shu-Hui Fu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yun Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| |
Collapse
|
6
|
Siaravas KC, Moula AI, Tzourtzos IS, Ballas CE, Katsouras CS. Acute and Chronic Cardiovascular Adverse Events in Patients with Acute Myeloid Leukemia: A Systematic Review. Cancers (Basel) 2025; 17:541. [PMID: 39941907 PMCID: PMC11817404 DOI: 10.3390/cancers17030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Patients with acute myeloid leukemia (AML) have a higher propensity for adverse cardiovascular outcomes, primarily due to the toxic effects of chemotherapeutic agents. The purpose of this systematic review is to explore the association of acute myeloid leukemia treatment with adverse cardiovascular events. Methods: We systematically screened the literature for studies providing comparative data on cardiovascular toxicities in patients treated for acute myeloid leukemia. After the initial search, 3649 papers were screened and a final total number of 46 were included for the review process. Results: Common chemotherapeutic agents used in AML may cause cardiovascular (CV) toxicities. A plethora of pathophysiological mechanisms are incriminated for these effects. Drug combinations may increase the risk in a synergistic way. In addition, common mutations of AML, personal history of previous cardiovascular disease and impaired heart function carry an increased complication risk. Biomarkers, as well as multimodality imaging, may be used for the early detection of cardiovascular toxicities. Conclusions: Increased risks of CV toxicity and comorbidities are observed among AML patients. With all the available diagnostic modalities, early detection and CV prevention strategies can improve the patient's prognosis and quality of life.
Collapse
Affiliation(s)
- Konstantinos C. Siaravas
- Department of Cardiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (K.C.S.); (I.S.T.)
| | - Amalia I. Moula
- Achilopouleio General Hospital of Volos, 38222 Volos, Greece;
| | - Ioannis S. Tzourtzos
- Department of Cardiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (K.C.S.); (I.S.T.)
| | - Christos E. Ballas
- Department of Thoracic Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Christos S. Katsouras
- Department of Cardiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (K.C.S.); (I.S.T.)
| |
Collapse
|
7
|
Sokei J, Kanefsky J, Sykes SM. Reprogramming of Fatty Acid Metabolism in Acute Leukemia. J Cell Physiol 2025; 240:e70000. [PMID: 39835485 DOI: 10.1002/jcp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia. The aims of this review are to summarize the aspects of fatty acid metabolism that are specifically coopted in acute leukemia as well as current preclinical strategies for targeting fatty acid metabolism in these cancers.
Collapse
Affiliation(s)
- Judith Sokei
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Joice Kanefsky
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Stephen M Sykes
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Rataj J, Gorecki L, Muthna D, Sorf A, Krystof V, Klener P, Ceckova M, Rezacova M, Korabecny J. Targeting FMS-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia: Novel molecular approaches and therapeutic challenges. Biomed Pharmacother 2025; 182:117788. [PMID: 39733588 DOI: 10.1016/j.biopha.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024] Open
Abstract
Acute myeloid leukemia (AML), a heterogeneous hematologic malignancy, has generally a poor prognosis despite the recent advancements in diagnostics and treatment. Genetic instability, particularly mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, is associated with severe outcomes. Approximately 30 % of AML patients harbor FLT3 mutations, which have been linked to higher relapse and reduced survival rates. Traditional AML treatments employ cytarabine and anthracyclines drugs. Furthermore, the development of FLT3 inhibitors has significantly improved therapy for FLT3-mutated AML patients. For example, the introduction of midostaurin, the first FLT3 inhibitor, improved patient outcomes. However, resistant AML cell clones continue to pose a challenge to the success of AML treatment. This review discusses FLT3 kinase, mutations, and role in AML pathogenesis. It explores the molecular mechanisms of FLT3 activation, signaling pathways, and the structure and function of the FLT3 receptor. Current and emerging therapeutic approaches are presented, while highlighting the latest FLT3 inhibitors in clinical use, and strategies to overcome drug resistance. Future directions, including personalized therapies and novel drug designs, are examined to provide updated insights into FLT3-targeted treatments. This comprehensive review aims to guide clinicians and researchers in the development of innovative therapies to improve AML patient outcomes.
Collapse
Affiliation(s)
- Jan Rataj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Darina Muthna
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Ales Sorf
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc 779 00, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Albertov 5/128 00, Prague 128 00, Czech Republic; First Department of Medicine, Department of Hematology, Charles University General Hospital, Katerinska 1660/32, Prague 121 08, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic.
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic.
| |
Collapse
|
9
|
Kegyes D, Thiagarajan PS, Ghiaur G. MRD in Acute Leukemias: Lessons Learned from Acute Promyelocytic Leukemia. Cancers (Basel) 2024; 16:3208. [PMID: 39335179 PMCID: PMC11430625 DOI: 10.3390/cancers16183208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Advances in molecular biology, polymerase chain reaction (PCR), and next-generation sequencing (NGS) have transformed the concept of minimal residual disease (MRD) from a philosophical idea into a measurable reality. Current Treatment Paradigms and Lessons Learned from APL: Acute promyelocytic leukemia (APL) leads the way in this transformation, initially using PCR to detect MRD in patients in remission, and more recently, aiming to eliminate it entirely with modern treatment strategies. Along the way, we have gained valuable insights that, when applied to other forms of acute leukemia, hold the potential to significantly improve the outcomes of these challenging diseases. Does the BM Microenvironment Play a Role in MRD?: In this review, we explore the current use of MRD in the management of acute leukemia and delve into the biological processes that contribute to MRD persistence, including its overlap with leukemia stem cells and the role of the bone marrow microenvironment.
Collapse
Affiliation(s)
- David Kegyes
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Gabriel Ghiaur
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Guarnera L, Visconte V. The metabolic fuel of paroxysmal nocturnal haemoglobinuria. Br J Haematol 2024; 204:2162-2164. [PMID: 38719212 DOI: 10.1111/bjh.19510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 06/15/2024]
Abstract
Metabolic reprogramming has been investigated in haematological malignancies. To date, a few studies have analysed the metabolic profile of paroxysmal nocturnal haemoglobinuria (PNH). The study by Chen and colleagues sheds light on the involvement of metabolic changes in the proliferation of PNH clones. Commentary on: Chen et al. The histone demethylase JMJD1C regulates CPS1 expression and promotes the proliferation of PNH clones through cell metabolic reprogramming. Br J Haematol 2024;204:2468-2479.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Khorashad JS, Rizzo S, Tonks A. Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:5. [PMID: 38434766 PMCID: PMC10905166 DOI: 10.20517/cdr.2023.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.
Collapse
Affiliation(s)
- Jamshid Sorouri Khorashad
- Department of Immunology and inflammation, Imperial College London, London, W12 0NN, UK
- Department of Molecular Pathology, Institute of Cancer Research, Sutton, SM2 5PT, UK
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sian Rizzo
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
13
|
Singh AK, Prasad P, Cancelas JA. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis. Front Cell Dev Biol 2023; 11:1325291. [PMID: 38169927 PMCID: PMC10759248 DOI: 10.3389/fcell.2023.1325291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems. The role of BM-MSC-derived adipocytes is more controversial and may act as positive or negative regulators of benign or malignant hematopoiesis based on their anatomical location and functional crosstalk with surrounding cells in the BM microenvironment. This review highlights the most recent clinical and pre-clinical findings on how BM-MSCs interact with the surrounding HSCs, progenitors, and immune cells, and address some recent insights on the mechanisms that mediate MSCs and adipocyte metabolic control through a metabolic crosstalk between BM microenvironment cells and intercellular mitochondrial transfer in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
14
|
Feng L, Zhang PY, Gao W, Yu J, Robson SC. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front Oncol 2023; 13:1244280. [PMID: 37746249 PMCID: PMC10513429 DOI: 10.3389/fonc.2023.1244280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
Collapse
Affiliation(s)
- Lili Feng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Y. Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Canton, MA, United States
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|