1
|
Chen Q, Yang X, Yu Y, Duan X, Ni R, Song G, Zhu L, Zhong Y, Qu K, Qin X, Zhang K, Luo Y, Wu W. Biomimetic Cerium-Assisted Supra-Carbon Dots Assembly for Reactive Oxygen Species-Activated Atherosclerosis Theranostic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408980. [PMID: 39777854 DOI: 10.1002/smll.202408980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Theranostic applications in atherosclerosis plaque microenvironment-triggered nanoplatforms are significantly compromised by the complex synthesis procedure, non-specific distribution, and limited therapeutic function. Therefore, development of a facile and feasible method to construct a pathology-based stimuli-responsive nanoplatform with satisfactory theranostic performance remains a demanding and highly anticipated goal. Herein, a novel class of multifunctional supra-carbon dots (CDs), denoted as MM@Ce-CDs NPs, by a simple nanoassembly and a subsequent coating with macrophage membrane (MM), is developed for the targeted reactive oxygen species-trigged theranostic and positive regulation of the pathological plaque microenvironment in AS. The harvested MM@Ce-CDs NPs exhibit activatable fluorescence properties, photoacoustic characteristics, and cascade enzyme performances, which can be effectively activated under ROS stimulation in the plaque pathological microenvironment, enabling precise control over theranostic functions, while markedly enhancing diagnostic accuracy and therapeutic efficacy for AS management. Besides, MM@Ce-CDs NPs can effectively manipulate the plaque microenvironment by reducing ROS levels and inflammation, alleviating M1 macrophage infiltration, and inhibiting foam cell formation, all together suppressing the pathological plaque development through the synergistic mechanisms. In addition, MM@Ce-CDs NPs inherit the biomimetic biological functions from MM, facilitating a highly specific target delivery to AS.
Collapse
Affiliation(s)
- Qiao Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
| | - Xu Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
| | - Yao Yu
- Thyroid Breast Surgery Department, Dazhou Central Hospital, Dazhou, 635000, China
| | - Xinmei Duan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
| | - Rongrong Ni
- Medical Department, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Guojing Song
- Urology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
| | - Yang Luo
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
2
|
Fazeli A, Godakumara K. The evolving roles of extracellular vesicles in embryo-maternal communication. Commun Biol 2024; 7:754. [PMID: 38906986 PMCID: PMC11192758 DOI: 10.1038/s42003-024-06442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Mammalian reproduction relies on precise maternal-fetal communication, wherein immune modifications foster tolerance toward the semi-allogeneic embryo. Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as crucial mediators, transporting molecules like microRNAs securely. EVs influence various reproductive stages, from gamete maturation to implantation, and impact pathologies like pregnancy loss. In the embryo-maternal dialogue, EVs notably affect oviductal interactions, gene expression, and the embryo-endometrial interface, crucial for successful implantation. Key queries persist about EV uptake, cargo delivery, and the specific biomolecules driving communication. Their potential in diagnostics, therapeutics, and understanding environmental impacts on fertility signals an exciting future, reliant on collaborative efforts for transformative strides in reproductive health.
Collapse
Affiliation(s)
- Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia.
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK.
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|