1
|
Sidhu R, Shiha MG, Carretero C, Koulaouzidis A, Dray X, Mussetto A, Keuchel M, Spada C, Despott EJ, Chetcuti Zammit S, McNamara D, Rondonotti E, Sabino J, Ferlitsch M. Performance measures for small-bowel endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative - Update 2025. Endoscopy 2025; 57:366-389. [PMID: 39909070 DOI: 10.1055/a-2522-1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Quality markers and patient experience are being implemented to ensure standardization of practice across gastrointestinal (GI) endoscopy procedures. The set benchmarks ensure high quality procedures are delivered and linked to measurable outcomes.There has been an increase in the demand for small-bowel endoscopy. In 2019, the European Society of Gastrointestinal Endoscopy (ESGE) embarked on setting performance measures for small-bowel endoscopy. This included major (key) and minor performance indicators for both small-bowel capsule endoscopy (SBCE) and device-assisted enteroscopy (DAE). These suggested quality indicators cover all procedure domains, from patient selection and preparation, to intraprocedural aspects such as pathology identification, appropriate management, the patient experience, and post-procedure complications. Since 2019, there has been an increase in published studies looking at different aspects of small-bowel endoscopy, including real-world data. This paper provides an update on the 2019 performance measures, considering the latest literature.
Collapse
Affiliation(s)
- Reena Sidhu
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Mohamed G Shiha
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Cristina Carretero
- Department of Gastroenterology, University of Navarra Clinic, Healthcare Research Institute of Navarra, Pamplona, Spain
| | - Anastasios Koulaouzidis
- Surgical Research Unit, Odense University Hospital (OUH) and Svendborg Sygehus, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Social Medicine and Public Health, Pomeranian Medical University, Szczecin, Poland
| | - Xavier Dray
- Sorbonne University, Center for Digestive Endoscopy, Sainte-Antoine Hospital, AP-HP, Paris, France
| | | | - Martin Keuchel
- Clinic for Internal Medicine, Agaplesion Bethesda Krankenhaus Bergedorf, Hamburg, Germany
| | - Cristiano Spada
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, Brescia, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Edward J Despott
- Royal Free Unit for Endoscopy, The Royal Free Hospital and UCL Institute for Liver and Digestive Health, London, UK
| | | | - Deirdre McNamara
- TAGG Research Centre, Department of Clinical Medicine, Trinity Centre, Tallaght Hospital, Dublin, Ireland
| | | | - João Sabino
- Department of Gastroenterology, University of Leuven, Leuven, Belgium
| | - Monika Ferlitsch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine with Gastroenterology and Geriatrics, Klinik Floridsdorf, Vienna, Austria
| |
Collapse
|
2
|
Habe TT, Haataja K, Toivanen P. Review of Deep Learning Performance in Wireless Capsule Endoscopy Images for GI Disease Classification. F1000Res 2024; 13:201. [PMID: 39464781 PMCID: PMC11503939 DOI: 10.12688/f1000research.145950.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
Wireless capsule endoscopy is a non-invasive medical imaging modality used for diagnosing and monitoring digestive tract diseases. However, the analysis of images obtained from wireless capsule endoscopy is a challenging task, as the images are of low resolution and often contain a large number of artifacts. In recent years, deep learning has shown great promise in the analysis of medical images, including wireless capsule endoscopy images. This paper provides a review of the current trends and future directions in deep learning for wireless capsule endoscopy. We focus on the recent advances in transfer learning, attention mechanisms, multi-modal learning, automated lesion detection, interpretability and explainability, data augmentation, and edge computing. We also highlight the challenges and limitations of current deep learning methods and discuss the potential future directions for the field. Our review provides insights into the ongoing research and development efforts in the field of deep learning for wireless capsule endoscopy, and can serve as a reference for researchers, clinicians, and engineers working in this area inspection process.
Collapse
Affiliation(s)
- Tsedeke Temesgen Habe
- School of Computing, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, North Karelia, 70211, Finland
| | - Keijo Haataja
- School of Computing, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, North Karelia, 70211, Finland
| | - Pekka Toivanen
- School of Computing, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, North Karelia, 70211, Finland
| |
Collapse
|
3
|
Mascarenhas M, Martins M, Afonso J, Ribeiro T, Cardoso P, Mendes F, Andrade P, Cardoso H, Mascarenhas-Saraiva M, Ferreira J, Macedo G. Deep learning and capsule endoscopy: Automatic multi-brand and multi-device panendoscopic detection of vascular lesions. Endosc Int Open 2024; 12:E570-E578. [PMID: 38654967 PMCID: PMC11039033 DOI: 10.1055/a-2236-7849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/21/2023] [Indexed: 04/26/2024] Open
Abstract
Background and study aims Capsule endoscopy (CE) is commonly used as the initial exam for suspected mid-gastrointestinal bleeding after normal upper and lower endoscopy. Although the assessment of the small bowel is the primary focus of CE, detecting upstream or downstream vascular lesions may also be clinically significant. This study aimed to develop and test a convolutional neural network (CNN)-based model for panendoscopic automatic detection of vascular lesions during CE. Patients and methods A multicentric AI model development study was based on 1022 CE exams. Our group used 34655 frames from seven types of CE devices, of which 11091 were considered to have vascular lesions (angiectasia or varices) after triple validation. We divided data into a training and a validation set, and the latter was used to evaluate the model's performance. At the time of division, all frames from a given patient were assigned to the same dataset. Our primary outcome measures were sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and an area under the precision-recall curve (AUC-PR). Results Sensitivity and specificity were 86.4% and 98.3%, respectively. PPV was 95.2%, while the NPV was 95.0%. Overall accuracy was 95.0%. The AUC-PR value was 0.96. The CNN processed 115 frames per second. Conclusions This is the first proof-of-concept artificial intelligence deep learning model developed for pan-endoscopic automatic detection of vascular lesions during CE. The diagnostic performance of this CNN in multi-brand devices addresses an essential issue of technological interoperability, allowing it to be replicated in multiple technological settings.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - João Afonso
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Tiago Ribeiro
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Pedro Cardoso
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Franscisco Mendes
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Patrícia Andrade
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Helder Cardoso
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - João Ferreira
- Department of Mechanical Engineering., University of Porto Faculty of Engineering, Porto, Portugal
| | - Guilherme Macedo
- Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
4
|
George AA, Tan JL, Kovoor JG, Lee A, Stretton B, Gupta AK, Bacchi S, George B, Singh R. Artificial intelligence in capsule endoscopy: development status and future expectations. MINI-INVASIVE SURGERY 2024. [DOI: 10.20517/2574-1225.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In this review, we aim to illustrate the state-of-the-art artificial intelligence (AI) applications in the field of capsule endoscopy. AI has made significant strides in gastrointestinal imaging, particularly in capsule endoscopy - a non-invasive procedure for capturing gastrointestinal tract images. However, manual analysis of capsule endoscopy videos is labour-intensive and error-prone, prompting the development of automated computational algorithms and AI models. While currently serving as a supplementary observer, AI has the capacity to evolve into an autonomous, integrated reading system, potentially significantly reducing capsule reading time while surpassing human accuracy. We searched Embase, Pubmed, Medline, and Cochrane databases from inception to 06 Jul 2023 for studies investigating the use of AI for capsule endoscopy and screened retrieved records for eligibility. Quantitative and qualitative data were extracted and synthesised to identify current themes. In the search, 824 articles were collected, and 291 duplicates and 31 abstracts were deleted. After a double-screening process and full-text review, 106 publications were included in the review. Themes pertaining to AI for capsule endoscopy included active gastrointestinal bleeding, erosions and ulcers, vascular lesions and angiodysplasias, polyps and tumours, inflammatory bowel disease, coeliac disease, hookworms, bowel prep assessment, and multiple lesion detection. This review provides current insights into the impact of AI on capsule endoscopy as of 2023. AI holds the potential for faster and precise readings and the prospect of autonomous image analysis. However, careful consideration of diagnostic requirements and potential challenges is crucial. The untapped potential within vision transformer technology hints at further evolution and even greater patient benefit.
Collapse
|
5
|
Zhang RY, Qiang PP, Cai LJ, Li T, Qin Y, Zhang Y, Zhao YQ, Wang JP. Automatic detection of small bowel lesions with different bleeding risks based on deep learning models. World J Gastroenterol 2024; 30:170-183. [PMID: 38312122 PMCID: PMC10835517 DOI: 10.3748/wjg.v30.i2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel (SB) capsule endoscopy (CE) that can assist physicians in diagnosis. However, the existing deep learning models present some unresolved challenges. AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks, and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups. METHODS The proposed model represents a two-stage method that combined image classification with object detection. First, we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images, normal SB mucosa images, and invalid images. Then, the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding, and the location of the lesion was marked. We constructed training and testing sets and compared model-assisted reading with physician reading. RESULTS The accuracy of the model constructed in this study reached 98.96%, which was higher than the accuracy of other systems using only a single module. The sensitivity, specificity, and accuracy of the model-assisted reading detection of all images were 99.17%, 99.92%, and 99.86%, which were significantly higher than those of the endoscopists' diagnoses. The image processing time of the model was 48 ms/image, and the image processing time of the physicians was 0.40 ± 0.24 s/image (P < 0.001). CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images, which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups.
Collapse
Affiliation(s)
- Rui-Ya Zhang
- Department of Gastroenterology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Peng-Peng Qiang
- School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Ling-Jun Cai
- Department of Gastroenterology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Tao Li
- School of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang 157011, Heilongjiang Province, China
| | - Yan Qin
- Department of Gastroenterology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Yu Zhang
- Department of Gastroenterology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Yi-Qing Zhao
- Department of Gastroenterology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jun-Ping Wang
- Department of Gastroenterology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
6
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
7
|
Bjørsum-Meyer T, Koulaouzidis A, Baatrup G. The optimal use of colon capsule endoscopes in clinical practice. Ther Adv Chronic Dis 2022; 13:20406223221137501. [PMID: 36440063 PMCID: PMC9685101 DOI: 10.1177/20406223221137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 08/30/2023] Open
Abstract
Colon capsule endoscopy (CCE) has been available for nearly two decades but has grappled with being an equal diagnostic alternative to optical colonoscopy (OC). Due to the COVID-19 pandemic, CCE has gained more foothold in clinical practice. In this cutting-edge review, we aim to present the existing knowledge on the pros and cons of CCE and discuss whether the modality is ready for a larger roll-out in clinical settings. We have included clinical trials and reviews with the most significant impact on the current position of CCE in clinical practice and discuss the challenges that persist and how they could be addressed to make CCE a more sustainable imaging modality with an adenoma detection rate equal to OC and a low re-investigation rate by a proper preselection of suitable populations. CCE is embedded with a very low risk of severe complications and can be performed in the patient's home as a pain-free procedure. The diagnostic accuracy is found to be equal to OC. However, a significant drawback is low completion rates eliciting a high re-investigation rate. Furthermore, the bowel preparation before CCE is extensive due to the high demand for clean mucosa. CCE is currently not suitable for large-scale implementation in clinical practice mainly due to high re-investigation rates. By a better preselection before CCE and the implantation of artificial intelligence for picture and video analysis, CCE could be the alternative to OC needed to move away from in-hospital services and relieve long-waiting lists for OC.
Collapse
Affiliation(s)
- Thomas Bjørsum-Meyer
- Department of Clinical Research, University of
Southern Denmark, Odense, Denmark
- Department of Surgery, Odense University
Hospital, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Anastasios Koulaouzidis
- Department of Clinical Research, University of
Southern Denmark, Odense, Denmark
- Department of Surgery, Odense University
Hospital, Odense, Denmark
| | - Gunnar Baatrup
- Department of Clinical Research, University of
Southern Denmark, Odense, Denmark
- Department of Surgery, Odense University
Hospital, Odense, Denmark
| |
Collapse
|