Mykchaylova O, Negriyko A, Matvieieva N, Lopatko K, Poyedinok N. Photoregulation of the biosynthetic activity of fungus
Inonotus obliquus using colloidal solutions of biogenic metal nanoparticles and low-intensity laser radiation.
Bioengineered 2025;
16:2458371. [PMID:
39873594 PMCID:
PMC11776471 DOI:
10.1080/21655979.2025.2458371]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025] Open
Abstract
This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom Inonotus obliquus in vitro. Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of I. obliquus (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of I. obliquus mycelia by 12.3-35.4%. Silver nanoparticles (AgNPs) in a nutrient medium suppressed the biosynthesis of extracellular polysaccharides, whereas laser irradiation in the same medium increased the synthesis of intracellular polysaccharides by 9.7 times. Magnesium nanoparticles (MgNPs) and iron nanoparticles (FeNPs) inhibited the synthesis of intracellular polysaccharides in the mycelial mass of I. obliquus. At the same time, laser irradiation of the inoculum with MgNPs, on the contrary, induced a sharp increase in the amount of polysaccharides in the culture liquid (20 times). Treatment of the inoculum in a medium with nanoparticles with a laser caused an intensification of the synthesis of flavonoids in the mycelial mass and an increase in the synthesis of melanin pigments (25-140%). The results obtained suggest the possibility of the complex use of colloidal solutions of Fe, Ag, and Mg nanoparticles and low-intensity laser radiation as environmentally friendly factors for regulating biosynthetic activity in the biotechnology of cultivating the valuable medicinal mushroom I. obliquus.
Collapse