1
|
Li D, Chen Y, Wong TF, Yang Q, Guo C, Jiang X, Ke C, Zhang X, Zeng J, Lv Y, Wu S, Wang J, Sai K, Mou Y, Chen Z. Management and survival trends for diffuse gliomas diagnosed at a single neurooncology center in China during 2000 to 2020. Sci Rep 2025; 15:12574. [PMID: 40221458 PMCID: PMC11993593 DOI: 10.1038/s41598-025-95693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Currently reported survival outcomes for gliomas exhibit significant variability and controversy. In this study, we aim to provide survival data in Chinese populations by conducting a retrospective analysis of management and survival trends in a large cohort of glioma patients from a single institute in China. A total of 1206 patients with newly diagnosed gliomas treated between 2000 and 2020 were enrolled, including 537 glioblastoma (WHO grade 4), 450 astrocytomas (grade 2/3) and 219 oligodendroglial tumors (grade 2/3). The estimated overall survival at 5 years was 18.9% for glioblastoma, 58.8% for astrocytomas, and 80.7% for oligodendroglial tumors, while median survival was 17.2 months, 82.8 months, and not reached, respectively. The survival trend has increased over the past decades for all types of gliomas. Additionally, similar survival trends were observed between grade 2 and 3 IDH-mutant gliomas. Rising trends were observed in patients undergoing postsurgical radiation and chemotherapy. Multivariate analysis identified adjuvant radiochemotherapy as an independent factor for better prognosis in glioblastoma and astrocytomas. In summary, despite its retrospective nature, this cohort of glioma patients exhibits favorable survival outcomes compared to global statistics, indicating a geographical disparity in glioma prognosis. The promotion of adjuvant chemoradiotherapy contributes to improved prognosis.
Collapse
Affiliation(s)
- Depei Li
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Yinsheng Chen
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Tang-Fai Wong
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- Department of Neurosurgery, Macao Kiang Wu Hospital, Macao, P. R. China
| | - Qunying Yang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - ChengCheng Guo
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Xiaobing Jiang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Chao Ke
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Xiangheng Zhang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Jing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Yanchun Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Shaoxiong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jian Wang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Ke Sai
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Yonggao Mou
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Zhongping Chen
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China.
| |
Collapse
|
2
|
Chan SC, Chiu TL, Ng SH, Kao HW, Tsai ST, Liu SH. 18F-FET PET/CT can aid in diagnosing patients with indeterminate MRI findings for brain tumors: a prospective study. Ann Nucl Med 2025; 39:342-352. [PMID: 39589672 DOI: 10.1007/s12149-024-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This prospective study aimed to evaluate the diagnostic value of fluorine-18-labeled fluoroethyltyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in diagnosing brain tumors within an Asian patient population. METHODS Patients suspected of having primary or recurrent brain tumors were prospectively recruited. Each patient underwent 18F-FET and fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT on separate days within 1 week. We calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy to compare the diagnostic performance of the two PET scans. The standardized uptake value (SUV) and tumor-to-background ratio (TBR) of the lesions were determined using static images. Additionally, time-activity curves (TACs) and time-to-peak (TTP) were generated from the dynamic PET images. RESULTS From September 2019 to December 2023, 33 subjects were enrolled for reasons including suspected brain tumors (n = 20) or suspicious glioma recurrence (n = 8) on magnetic resonance imaging (MRI) and restaging for glioma (n = 5). Among the patients with suspected brain tumors or glioma recurrence on MRI, 25% had false-positive results. 18F-FET PET/CT accurately identified 86% of these false positives. The sensitivity, specificity, PPV, NPV, and accuracy of visual interpretation of 18F-FET PET/CT were 96.2%, 85.7%, 96.2%, 85.7%, and 93.9%, respectively. The corresponding 18F-FDG PET/CT values were 73.1%, 71.4%, 90.5%, 41.7%, and 72.7%. 18F-FET PET/CT demonstrated significantly higher sensitivity and accuracy than 18F-FDG PET (p = 0.031 and p = 0.030, respectively). Using TBRmean as an adjunct reference index enhanced the diagnostic accuracy of 18F-FET PET/CT, achieving a sensitivity and NPV of 100%. Wash-out TAC or TTP < 20 min was associated with a PPV of 100% for brain tumors. CONCLUSIONS 18F-FET PET/CT appears to be a valuable tool for assessing brain tumors with indeterminate MRI findings in this Asian cohort. 18F-FET PET/CT offers benefits over 18F-FDG PET in differentiating brain tumors from nontumor brain lesions, particularly when using semiquantitative analysis with TBR. This study was registered on CinicalTrial.gov (NCT06563024).
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan.
- Department of Nuclear Medicine, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan.
| | - Tsung-Lang Chiu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333423, Taiwan
| | - Hung-Wen Kao
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
- Department of Radiology, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hsin Liu
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| |
Collapse
|
3
|
Liu Z, Deng J, Xu H, Liu L, Zhang Y, Ba Y, Zhang Z, He F, Xie L. Efficient discovery of robust prognostic biomarkers and signatures in solid tumors. Cancer Lett 2025; 613:217502. [PMID: 39864538 DOI: 10.1016/j.canlet.2025.217502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Recent advancements in multi-omics and big-data technologies have facilitated the discovery of numerous cancer prognostic biomarkers and gene signatures. However, their clinical application remains limited due to poor reproducibility and insufficient independent validation. Despite the availability of high-quality datasets, achieving reliable biomarker identification across multiple cohorts continues to be a significant challenge. To address these issues, we developed a comprehensive platform, SurvivalML, designed to support the discovery and validation of prognostic biomarkers and gene signatures using large-scale and harmonized data from 21 cancer types. Through SurvivalML, we identified DCLRE1B as a novel prognostic biomarker for hepatocellular carcinoma, with experimental confirmation of its role in promoting tumor progression. Additionally, we developed the Chinese glioblastoma prognostic signature (CGPS) and its simplified version, SCGPS, a three-gene model. Both demonstrated superior predictive performance compared to other glioblastoma signatures in our in-house cohort and five independent Chinese datasets. The SCGPS model was further validated in 109 clinical samples using multiplex immunofluorescence, showing strong consistency with the original CGPS model. Overall, SurvivalML provides a robust platform for the identification and validation of prognostic biomarkers and gene signatures, offering a valuable resource for advancing cancer research and clinical application.
Collapse
Affiliation(s)
- Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China; International Academy of Phronesis Medicine (Guangdong), 510320, Guangdong, China
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shanxi, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhengyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China; International Academy of Phronesis Medicine (Guangdong), 510320, Guangdong, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, 102206, Beijing, China.
| | - Linhai Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China; International Academy of Phronesis Medicine (Guangdong), 510320, Guangdong, China.
| |
Collapse
|
4
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
5
|
Ding CF, Qin ML, Zhao KY, Gao W, Yin SZ, Hu XG, Cheng GG, Zhang RP, Hu WY. Voagafries A-E, undescribed indole alkaloids with anti-glioma activity from Voacanga africana. PHYTOCHEMISTRY 2025; 231:114361. [PMID: 39674246 DOI: 10.1016/j.phytochem.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Voagafries A-E, five undescribed monoterpenoid indole alkaloids (MIAs), were isolated from the stem bark of Voacanga africana. Voagafrie A (1) has a unique 6/5/5/6/6 spiral ring skeleton with an indolone-fused 9-oxo-3-aza-tricyclo[6,3,1,03,7]-12-alkane-10-carbonyllactone. Voagafrie B (2) is a rare 5,6-seco diazine scaffold, whereas voagafrie C (3) possesses an octahydropyrrolo[2,3-b] pyrrole-fused 2,8-diazabicyclo[3.3.1] nonane. In addition, voagafrie D (4) represents an additional 3C ibogamine-type MIA. Their structures were elucidated using extensive spectroscopic and computational analyses and a plausible biosynthetic pathway originating from conopharyngine was proposed. Furthermore, voagafries B (2) and E (5) exhibited significant cytotoxicity against SH-SY5Y at 10 μmol/L with cell viabilities of 72.7 ± 3.8 and 79.5 ± 2.1, respectively, which were comparable to that of the positive drug paclitaxel (64.1 ± 0.9). Based on the research on several cell death-related factors, these compounds may be involved in apoptosis; therefore, it is necessary to advance our understanding of them through future studies.
Collapse
Affiliation(s)
- Cai-Feng Ding
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Ma-Long Qin
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China; China Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Kun-Ying Zhao
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Wen Gao
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Shan-Ze Yin
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Xian-Guang Hu
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Gui-Guang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Rong-Ping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Wei-Yan Hu
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
6
|
Qian X, Yang L, Shi Y. Investigation of the impact of magnetic resonance imaging-assisted surgery on immune cell cytokine levels and efficacy in patients with gliomas. Curr Probl Surg 2025; 63:101640. [PMID: 39922633 DOI: 10.1016/j.cpsurg.2024.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 02/10/2025]
Affiliation(s)
- Xueshan Qian
- Department of CT&MRI Room, Qianjiang Central Hospital, Qianjiang, Hubei Province, China
| | - Li Yang
- Department of Radiology, Mianyang Central Hospital, Mianyang, Sichuan Province, China
| | - Yonghui Shi
- Department of Radiology, the Affiliated Hospital of Tibet Minzu University, Xianyang, Shaanxi Province, China.
| |
Collapse
|
7
|
Irshad HA, Rizvi SBA, Bajwa MH, Khalid MU, Shah MM, Enam SA. Epidemiology of glioblastoma in Pakistan: a secondary analysis of the Pakistan Brain Tumor Epidemiology Study (PBTES). J Neurooncol 2025; 171:455-462. [PMID: 39527383 DOI: 10.1007/s11060-024-04872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The incidence and outcomes of glioblastoma (GBM) patients in Pakistan remain unassessed owing to a lack of cancer registries and the absence of population-based studies. For any specific population-based oncological intervention, epidemiology must be studied. Therefore, this study aims to examine the epidemiological characteristics of glioblastoma patients in Pakistan, as part of a secondary analysis of a nationwide epidemiological study. METHODS Data comprising of sociodemographic, tumor and treatment characteristics of 2750 patients from the Pakistan Brain Tumor Epidemiology Study were extracted and analyzed for cases between January 1, 2019, and December 31, 2019. Chi-square tests identified outcome and treatment differences. Data analysis was performed using SPSS version 26. RESULTS A total of 260 GBM cases were analyzed, with a mean diagnosis age of 45 years. Males accounted for 68.8%. Most patients were from a middle- (39.6%) or lower-income (42.7%) socioeconomic background and received care from a public institution (63.8%). GBM tumors were mainly located in the frontal lobe with similar proportions of right and left laterality. A median distance of 119 km was traveled for oncological care, and the mean time to surgery from the initial radiological diagnosis was 72 days. Gross total resection was achieved in 47.3% of first surgeries, with 23 reoperations for recurrence. At the end of the study period, 33% of the GBM cohort was recorded as alive with 47% being lost to follow-up. CONCLUSION Our analysis is the first population-based analysis of GBM in Pakistan. This epidemiologic study can serve as a basis for future research in etiology, treatment, and outcomes for glioblastoma in the Pakistani population.
Collapse
Affiliation(s)
| | | | - Mohammad Hamza Bajwa
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, 74800, Pakistan
| | - Muhammad Usman Khalid
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, 74800, Pakistan
| | - Mashal Murad Shah
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, 74800, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, 74800, Pakistan.
- Center Of Oncological Research in Surgery (COORS), Juma Research Laboratories, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
8
|
Gui J, Chen J, Wan K, Liu Y, Huang K, Zhu X. Identification of Brain Cell Type-Specific Therapeutic Targets for Glioma From Genetics. CNS Neurosci Ther 2024; 30:e70185. [PMID: 39722126 DOI: 10.1111/cns.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Previous research has demonstrated correlations between the complex types and functions of brain cells and the etiology of glioma. However, the causal relationship between gene expression regulation in specific brain cell types and glioma risk, along with its therapeutic implications, remains underexplored. METHODS Utilizing brain cell type-specific cis-expression quantitative trait loci (cis-eQTLs) and glioma genome-wide association study (GWAS) datasets in conjunction with Mendelian randomization (MR) and colocalization analyses, we conducted a systematic investigation to determine whether an association exists between the gene expression of specific brain cell types and the susceptibility to glioma, including its subtypes. Additionally, the potential pathogenicity was explored utilizing mediation and bioinformatics analyses. This exploration ultimately led to the identification of a series of brain cell-specific therapeutic targets. RESULTS A total of 110 statistically significant and robust associations were identified through MR analysis, with most genes exhibiting causal effects exclusively in specific brain cell types or glioma subtypes. Bayesian colocalization analysis validated 36 associations involving 26 genes as potential brain cell-specific therapeutic targets. Mediation analysis revealed genes indirectly influencing glioma risk via telomere length. Bioinformatics analysis highlighted the involvement of these genes in glioma pathogenesis pathways and supported their enrichment in specific brain cell types. CONCLUSIONS This study, employing an integrated approach, demonstrated the genetic susceptibility between brain cell-specific gene expression and the risk of glioma and its subtypes. Its findings offer novel insights into glioma etiology and underscore potential therapeutic targets specific to brain cell types.
Collapse
Affiliation(s)
- Jiawei Gui
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiali Chen
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Keqi Wan
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Liu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kai Huang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xingen Zhu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Adamu MJ, Kawuwa HB, Qiang L, Nyatega CO, Younis A, Fahad M, Dauya SS. Efficient and Accurate Brain Tumor Classification Using Hybrid MobileNetV2-Support Vector Machine for Magnetic Resonance Imaging Diagnostics in Neoplasms. Brain Sci 2024; 14:1178. [PMID: 39766377 PMCID: PMC11674380 DOI: 10.3390/brainsci14121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic Resonance Imaging (MRI) plays a vital role in brain tumor diagnosis by providing clear visualization of soft tissues without the use of ionizing radiation. Given the increasing incidence of brain tumors, there is an urgent need for reliable diagnostic tools, as misdiagnoses can lead to harmful treatment decisions and poor outcomes. While machine learning has significantly advanced medical diagnostics, achieving both high accuracy and computational efficiency remains a critical challenge. METHODS This study proposes a hybrid model that integrates MobileNetV2 for feature extraction with a Support Vector Machine (SVM) classifier for the classification of brain tumors. The model was trained and validated using the Kaggle MRI brain tumor dataset, which includes 7023 images categorized into four types: glioma, meningioma, pituitary tumor, and no tumor. MobileNetV2's efficient architecture was leveraged for feature extraction, and SVM was used to enhance classification accuracy. RESULTS The proposed hybrid model showed excellent results, achieving Area Under the Curve (AUC) scores of 0.99 for glioma, 0.97 for meningioma, and 1.0 for both pituitary tumors and the no tumor class. These findings highlight that the MobileNetV2-SVM hybrid not only improves classification accuracy but also reduces computational overhead, making it suitable for broader clinical use. CONCLUSIONS The MobileNetV2-SVM hybrid model demonstrates substantial potential for enhancing brain tumor diagnostics by offering a balance of precision and computational efficiency. Its ability to maintain high accuracy while operating efficiently could lead to better outcomes in medical practice, particularly in resource limited settings.
Collapse
Affiliation(s)
- Mohammed Jajere Adamu
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
- Department of Computer Science, Yobe State University, Damaturu 600213, Nigeria;
- Center for Distance and Online Education, Lovely Professional University, Phagwara 144411, India
| | - Halima Bello Kawuwa
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Li Qiang
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
| | - Charles Okanda Nyatega
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
- Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya P.O. Box 131, Tanzania
| | - Ayesha Younis
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
| | - Muhammad Fahad
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
| | - Salisu Samaila Dauya
- Department of Computer Science, Yobe State University, Damaturu 600213, Nigeria;
| |
Collapse
|
10
|
Zhang Y, Xie J, Zhang H, Li J, Mi X, Zhou X, Ding Z. Serum exosomal miRNA promote glioma progression by targeting SOS1 via abscopal effect of radiation. Arch Biochem Biophys 2024; 761:110138. [PMID: 39303929 DOI: 10.1016/j.abb.2024.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Local exposure to ionizing radiation (IR) can induce changes in biological processes in distant tissues and organs. Exosomes are nanoscale vesicles that transport biomolecules, mediate communication between cells and tissues, and can affect the abscopal effects of radiotherapy. METHODS Mice were treated with 8.0 Gy doses of chest and abdomen IR, after which serum samples were taken 24 h after exposure. Their serum exosomes were then isolated via ultracentrifugation and the small RNA portions were extracted for sequencing and bioinformatic analysis. Exosomes were injected intravenously into the mice to assess their ability to cross the blood-brain barrier (BBB). Glioma cells and glioma stem cells (GSCs) were examined for malignant biological behaviors, stemness, and tumorigenic capacity after co-culturing with different groups of exosomes. RESULTS We found that serum exosomes crossed the BBB in mice after local IR exposure-which induced decreases in the expression of BBB tight-junction proteins and increased brain endothelial cell apoptosis. Exosomes from the exposed groups promoted malignant biological behaviors, stemness, and tumorigenic capacity in glioma cells and GSCs by upregulating the expression of SOS1. Phospho-MEK1/2 and Phospho-ERK1/2, of the MAPK signaling pathway, were found to be up-regulated in cells that were co-cultured with the exposing groups of the exosomes. Further analyses demonstrated that differentially expressed levels of miR-93-5p in mouse serum exosomes regulated the cellular expression of SOS1. CONCLUSION Following local IR exposure, serum exosomes cross the BBB to promote the progression of distant gliomas. Exosomal microRNAs play an important role in this process.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Huimin Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Jiacheng Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Xing Mi
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Xuyi Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Lee M, Karschnia P, Park YW, Choi K, Han K, Choi SH, Yoon HI, Shin NY, Ahn SS, Tonn JC, Chang JH, Kim SH, Lee SK. Comparative analysis of molecular and histological glioblastomas: insights into prognostic variance. J Neurooncol 2024; 169:531-541. [PMID: 39115615 DOI: 10.1007/s11060-024-04737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Whether molecular glioblastomas (GBMs) identify with a similar dismal prognosis as a "classical" histological GBM is controversial. This study aimed to compare the clinical, molecular, imaging, surgical factors, and prognosis between molecular GBMs and histological GBMs. METHODS Retrospective chart and imaging review was performed in 983 IDH-wildtype GBM patients (52 molecular GBMs and 931 histological GBMs) from a single institution between 2005 and 2023. Propensity score-matched analysis was additionally performed to adjust for differences in baseline variables between molecular GBMs and histological GBMs. RESULTS Molecular GBM patients were substantially younger (58.1 vs. 62.4, P = 0.014) with higher rate of TERTp mutation (84.6% vs. 50.3%, P < 0.001) compared with histological GBM patients. Imaging showed higher incidence of gliomatosis cerebri pattern (32.7% vs. 9.2%, P < 0.001) in molecular GBM compared with histological GBM, which resulted in lesser extent of resection (P < 0.001) in these patients. The survival was significantly better in molecular GBM compared to histological GBM (median OS 30.2 vs. 18.4 months, P = 0.001). The superior outcome was confirmed in propensity score analyses by matching histological GBM to molecular GBM (P < 0.001). CONCLUSION There are distinct clinical, molecular, and imaging differences between molecular GBMs and histological GBMs. Our results suggest that molecular GBMs have a more favorable prognosis than histological GBMs.
Collapse
Affiliation(s)
- Myunghwan Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| | - Kaeum Choi
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Na-Young Shin
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| |
Collapse
|
12
|
Zheng G, Zeng G, Wei D. The role of NPC2 gene in glioma was investigated based on bioinformatics analysis. Sci Rep 2024; 14:19134. [PMID: 39160329 PMCID: PMC11333723 DOI: 10.1038/s41598-024-70221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors in adults. The NPC2 gene (Niemann-Pick type C intracellular cholesterol transporter 2) is a protein-coding gene with a lipid recognition domain. The NPC2 gene was found to be significantly increased in gliomas (LGG and GBM), and it is now thought to be a risk factor. COX analysis demonstrated that NPC2 was a significant risk factor for glioma. Functional enrichment analysis of genes that were differentially expressed between high and low expression groups revealed that genes were primarily enriched in the regulation of trans-synaptic signaling, Retrograde endocannabinoid signaling and other pathways. According to the findings of the immunoinfiltration investigation, the NPC2 gene and macrophage, DC, etc. have a strong positive association. In addition, patients with high NPC2 expression had higher levels of immune cell expression. Medication sensitivity research revealed that NPC2's differential expression had some bearing on patients' medication sensitivity. There was a strong correlation between the prognosis of glioma patients and the gene sets NUDT19 and NUME. In brief, the NPC2 gene was identified to be a possible biomarker of glioma, and preliminary analysis was done on the role of the NPC2 gene in immunological microenvironment of glioma.
Collapse
Affiliation(s)
- Guangwei Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guangming Zeng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - De Wei
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
13
|
De Simone M, Conti V, Palermo G, De Maria L, Iaconetta G. Advancements in Glioma Care: Focus on Emerging Neurosurgical Techniques. Biomedicines 2023; 12:8. [PMID: 38275370 PMCID: PMC10813759 DOI: 10.3390/biomedicines12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Despite significant advances in understanding the molecular pathways of glioma, translating this knowledge into effective long-term solutions remains a challenge. Indeed, gliomas pose a significant challenge to neurosurgical oncology because of their diverse histopathological features, genetic heterogeneity, and clinical manifestations. Relevant sections: This study focuses on glioma complexity by reviewing recent advances in their management, also considering new classification systems and emerging neurosurgical techniques. To bridge the gap between new neurosurgical approaches and standards of care, the importance of molecular diagnosis and the use of techniques such as laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) are emphasized, exploring how the integration of molecular knowledge with emerging neurosurgical approaches can personalize and improve the treatment of gliomas. CONCLUSIONS The choice between LITT and FUS should be tailored to each case, considering factors such as tumor characteristics and patient health. LITT is favored for larger, complex tumors, while FUS is standard for smaller, deep-seated ones. Both techniques are equally effective for small and superficial tumors. Our study provides clear guidance for treating pediatric low-grade gliomas and highlights the crucial roles of LITT and FUS in managing high-grade gliomas in adults. This research sets the stage for improved patient care and future developments in the field of neurosurgery.
Collapse
Affiliation(s)
- Matteo De Simone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Giuseppina Palermo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Lucio De Maria
- Unit of Neurosurgery, Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy;
- Unit of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland
| | - Giorgio Iaconetta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
14
|
Nakasu S, Deguchi S, Nakasu Y. IDH wild-type lower-grade gliomas with glioblastoma molecular features: a systematic review and meta-analysis. Brain Tumor Pathol 2023:10.1007/s10014-023-00463-8. [PMID: 37212969 DOI: 10.1007/s10014-023-00463-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The WHO 2021 classification defines IDH wild type (IDHw) histologically lower-grade glioma (hLGG) as molecular glioblastoma (mGBM) if TERT promoter mutation (pTERTm), EGFR amplification or chromosome seven gain and ten loss aberrations are indicated. We systematically reviewed articles of IDHw hLGGs studies (49 studies, N = 3748) and meta-analyzed mGBM prevalence and overall survival (OS) according to the PRISMA statement. mGBM rates in IDHw hLGG were significantly lower in Asian regions (43.7%, 95% confidence interval [CI: 35.8-52.0]) when compared to non-Asian regions (65.0%, [CI: 52.9-75.4]) (P = 0.005) and were significantly lower in fresh-frozen specimen when compared to formalin-fixed paraffin-embedded samples (P = 0.015). IDHw hLGGs without pTERTm rarely expressed other molecular markers in Asian studies when compared to non-Asian studies. Patients with mGBM had significantly longer OS times when compared to histological GBM (hGBM) (pooled hazard ratio (pHR) 0.824, [CI: 0.694-0.98], P = 0.03)). In patients with mGBM, histological grade was a significant prognostic factor (pHR 1.633, [CI: 1.09-2.447], P = 0.018), as was age (P = 0.001) and surgical extent (P = 0.018). Although bias risk across studies was moderate, mGBM with grade II histology showed better OS rates when compared to hGBM.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Division of Neurosurgery, Omi Medical Center, Yabase-cho 1660, Kusatsu, Shiga, 525-8585, Japan.
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan.
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
15
|
Wei J, Zhang H, Ma X, Li Y, Zhou W, Guo J, Jin T, Hu M. Effect of OR51E1 Single Nucleotide Polymorphisms on Glioma Susceptibility in the Chinese Han Population. Gene 2023; 875:147489. [PMID: 37207826 DOI: 10.1016/j.gene.2023.147489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glioma is one of the common primary intracranial tumors, which is heterogeneous among individuals with a low cure rate. Our study aimed to investigate the association between single nucleotide polymorphisms (SNPs) of the OR51E1 gene and glioma susceptibility in the Chinese Han population. METHODS A total of six SNPs on OR51E1 in 1,026 subjects (526 cases and 500 controls) were genotyped by MassARRAY iPLEX GOLD assay. The association between these SNPs and glioma susceptibility was analyzed using logistic regression, and odds ratios (ORs) and 95% confidence intervals (CIs) were also calculated. The multifactor dimensionality reduction (MDR) method was applied to detect "SNP-SNP" interactions. RESULTS In the overall sample, polymorphisms rs10768148, rs7102992, and rs10500608 were identified to be associated with glioma risk. In the stratified analysis based on gender, only polymorphism rs10768148 was observed to be associated with the risk of glioma. In the age-stratified analysis, rs7102992, rs74052483, and rs10500609 contributed to the risk of glioma in subjects aged > 40 years. And polymorphisms rs10768148 and rs7102992 were associated with the risk of glioma in subjects aged ≤ 40 years and subjects with astrocytoma. In addition, a strong synergistic relationship between rs74052483 and rs10768148, and a strong redundant relationship between rs7102992 and rs10768148 were identified in the study. CONCLUSIONS This study demonstrated the association of OR51E1 polymorphisms with glioma susceptibility, providing a basis for assessing glioma risk-associated variants in the Chinese Han population.
Collapse
Affiliation(s)
- Jie Wei
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Huan Zhang
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoya Ma
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yujie Li
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wenqian Zhou
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jinping Guo
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tianbo Jin
- School of Medicine, Northwest University, Xi'an 710069, China
| | - Mingjun Hu
- School of Medicine, Northwest University, Xi'an 710069, China; Department of Neurosurgery, Xi'an Changan District Hospital, Xi'an 710199, China.
| |
Collapse
|
16
|
Cui X, Wang Y, Zhou J, Wang Q, Kang C. Expert opinion on translational research for advanced glioblastoma treatment. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0012. [PMID: 37092846 PMCID: PMC10246444 DOI: 10.20892/j.issn.2095-3941.2023.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Malignant gliomas are known to be one of the most difficult diseases to diagnose and treat because of the infiltrative growth pattern, rapid progression, and poor prognosis. Many antitumor drugs are not ideal for the treatment of gliomas due to the blood-brain barrier. Temozolomide (TMZ) is a DNA alkylating agent that can cross the blood-brain barrier. As the only first-line chemotherapeutic drug for malignant gliomas at present, TMZ is widely utilized to provide a survival benefit; however, some patients are inherently insensitive to TMZ. In addition, patients could develop acquired resistance during TMZ treatment, which limits antitumor efficacy. To clarify the mechanism underlying TMZ resistance, numerous studies have provided multilevel solutions, such as improving the effective concentration of TMZ in tumors and developing novel small molecule drugs. This review discusses the in-depth mechanisms underlying TMZ drug resistance, thus aiming to provide possibilities for the establishment of personalized therapeutic strategies against malignant gliomas and the accelerated development and transformation of new targeted drugs.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunfei Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junhu Zhou
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|