1
|
Ahi EP, Panda B, Primmer CR. The hippo pathway: a molecular bridge between environmental cues and pace of life. BMC Ecol Evol 2025; 25:35. [PMID: 40275190 PMCID: PMC12020181 DOI: 10.1186/s12862-025-02378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| | - Bineet Panda
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S. Estrogen signalling and Alzheimer's disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 2024; 60:3466-3490. [PMID: 38726764 DOI: 10.1111/ejn.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024]
Abstract
In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERβ)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.
Collapse
Affiliation(s)
- Rishabh
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sheenam Sharma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Navjyoti Goyal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| |
Collapse
|
3
|
Tsai YL, Yu PC, Nien HH, Lu TP. Time variation of high-risk groups for liver function deteriorations within fluctuating long-term liver function after hepatic radiotherapy in patients with hepatocellular carcinoma. Eur J Med Res 2024; 29:104. [PMID: 38326881 PMCID: PMC10848403 DOI: 10.1186/s40001-024-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE The purpose of this study is to find essential risk factors associated with liver function (LF) deteriorations within fluctuating long-term LF and their time-varying effects in patients with hepatocellular carcinoma (HCC) receiving hepatic radiotherapy and to identify high-risk groups for adverse LF deteriorations and their changes over time in facilitating the prevention of hepatic decompensation and the improvement of survival. MATERIALS AND METHODS A total of 133 HCC patients treated by hepatic radiotherapy were enrolled. A study design was conducted to convert posttreatment long-term LF with fluctuating levels over time to recurrent LF events using defined upgrades in a grading scale. The hazard ratios (HR) of pretreatment biochemical, demographic, clinical, and dosimetric factors in developing posttreatment LF events were estimated using the Cox model. Methodologies of the counting process approach, robust variance estimation, goodness-of-fit testing based on the Schoenfeld residuals, and time-dependent covariates in survival analysis were employed to handle the correlation within subjects and evaluate the time-varying effects during long-term follow-up. RESULTS Baseline LF score before radiotherapy and gender were significant factors. Initial HR in developing LF events was 1.17 (95% CI 1.11-1.23; P < 0.001) for each increase of baseline LF score and kept almost constant over time (HR, 1.00; 95% CI 1.00-1.01; P = 0.065). However, no difference was observed regarding initial hazards for gender (HR, 1.00; 95% CI 0.64-1.56; P = 0.994), but the hazard for women got higher monthly over time compared with men (HR, 1.04; 95% CI 1.01-1.07; P = 0.006). CONCLUSIONS High-risk groups for adverse LF deteriorations after hepatic radiotherapy may change over time. Patients with poor baseline LF are vulnerable from the beginning. Women require prevention strategies and careful monitoring for deteriorations at a later stage.
Collapse
Affiliation(s)
- Yu-Lun Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
| | - Pei-Chieh Yu
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Nien
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Rishabh, Bansal S, Goel A, Gupta S, Malik D, Bansal N. Unravelling the Crosstalk between Estrogen Deficiency and Gut-biotaDysbiosis in the Development of Diabetes Mellitus. Curr Diabetes Rev 2024; 20:e240124226067. [PMID: 38275037 DOI: 10.2174/0115733998275953231129094057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Estrogens are classically considered essential hormonal signals, but they exert profound effects in a number of physiological and pathological states, including glucose homeostasis and insulin resistance. Estrogen deficiency after menopause in most women leads to increased androgenicity and changes in body composition, and it is recommended to manipulate the β-cell function of the pancreas, insulin-induced glucose transport, and hepatic glucose output, hence, the increasing incidence of type 2 diabetes mellitus. Recently, studies have reported that gut biota alteration due to estrogen deficiency contributes to altered energy metabolism and, hence, accentuates the pathology of diabetes mellitus. Emerging research suggests estrogen deficiency via genetic disposition or failure of ovaries to function in old age modulates the insulin resistance and glucose secretion workload on pancreatic beta cells by decreasing the levels of good bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Lactobacillus spp., Faecalibacterium prausnitzii, Roseburia spp., and Prevotella spp., and increasing the levels of bad bacteria's such as Bacteroides spp., Clostridium difficile, Escherichia coli, and Enterococcus spp. Alteration in these bacteria's concentrations in the gut further leads to the development of impaired glucose uptake by the muscles, increased gluconeogenesis in the liver, and increased lipolysis and inflammation in the adipose tissues. Thus, the present review paper aims to clarify the intricate interactions between estrogen deficiency, gut microbiota regulation, and the development of diabetes mellitus.
Collapse
Affiliation(s)
- Rishabh
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Seema Bansal
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Akriti Goel
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Deepti Malik
- Department of Biochemistry, All India Institute of Medical Sciences Bilaspur, HP, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| |
Collapse
|