1
|
Li C, Ding Z, Cai Z, Ruan Y, Lü P, Liu Y. Exogenous Melatonin Boosts Heat Tolerance in Rosa hybrida via RhCOMT1 Modulation. PLANTS (BASEL, SWITZERLAND) 2024; 14:29. [PMID: 39795289 PMCID: PMC11722804 DOI: 10.3390/plants14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Rosa hybrida is one the most commonly cultivated ornamental plant of economic importance and faces major challenges under heat stress. Melatonin has been widely shown to regulate plant stress response; however, the exact mechanism involved in heat stress in R. hybrida has yet to be determined. Here, we observed that R. hybrida in vitro plantlets supplemented with melatonin in the culture medium exhibited higher chlorophyll content, relative ion leakage, and fresh weight after 12 d of high-temperature treatment; the optimal concentration was established at 5 mg/L. Using molecular and biochemical techniques, we explored the roles of a melatonin synthase gene RhCOMT1, which expression was influenced by heat stress and melatonin. RhCOMT1 was located in the nuclear-cytoplasmic under ambient conditions, while heat stress translocated the distribution of RhCOMT1 to chloroplasts. Overexpression of RhCOMT1 in rose petal enhanced thermotolerance, and silencing of RhCOMT1 reduced thermotolerance via affect H2O2 content and relative ion leakage. These findings collectively emphasize the pivotal role of melatonin in enhancing thermotolerance to R. hybrida by alleviation of oxidative stress, through modulation of RhCOMT1 expression and location.
Collapse
Affiliation(s)
- Chenyang Li
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhiyin Ding
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| | - Zipeng Cai
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| | - Yongying Ruan
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| | - Peitao Lü
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yang Liu
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| |
Collapse
|
2
|
Chu Y, Bao Q, Li Y, Sun H, Liu Z, Shi J, Huang Y. Melatonin Alleviates Antimony Toxicity by Regulating the Antioxidant Response and Reducing Antimony Accumulation in Oryza sativa L. Antioxidants (Basel) 2023; 12:1917. [PMID: 38001770 PMCID: PMC10669696 DOI: 10.3390/antiox12111917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Antimony (Sb) is a hazardous metal element that is potentially toxic and carcinogenic. Melatonin (MT) is an indole compound with antioxidant properties that plays an essential role in plant growth and alleviates heavy metal stresses. Nevertheless, little is known about the effects and mechanisms of exogenous MT action on rice under Sb stress. The aim of this experiment was to explore the mechanism of MT reducing Sb toxicity in rice via hydroponics. The results showed that Sb stress significantly inhibited the growth of rice, including biomass, root parameters, and root viability. Exogenous MT obviously alleviated the inhibition of Sb stress on seedling growth and increased biomass, root parameters, and root viability by 15-55%. MT significantly reduced the total Sb content in rice and the subcellular Sb contents in roots by nearly 20-40% and 12.3-54.2% under Sb stress, respectively. MT significantly decreased the contents of malondialdehyde (MDA, by nearly 50%), ROS (H2O2 and O2·-, by nearly 20-30%), and RNS (NO and ONOO-) in roots under Sb stress, thus reducing oxidative stress and cell membrane damage. Furthermore, MT reversed Sb-induced phytotoxicity by increasing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) by nearly 15% to 50% and by regulating the AsA-GSH cycle. In conclusion, this study demonstrates the potential of MT to maintain redox homeostasis and reduce Sb toxicity in rice cells, decreasing the content of Sb in rice and thereby alleviating the inhibition of Sb on rice growth. The results provided a feasible strategy for mitigating Sb toxicity in rice.
Collapse
Affiliation(s)
- Yutan Chu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiongli Bao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Li
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongyu Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zewei Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiahao Shi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yizong Huang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
3
|
Du D, Xiong H, Xu C, Zeng W, Li J, Dong G. Nutrient Metabolism Pathways Analysis and Key Candidate Genes Identification Corresponding to Cadmium Stress in Buckwheat through Multiomics Analysis. Genes (Basel) 2023; 14:1462. [PMID: 37510366 PMCID: PMC10378796 DOI: 10.3390/genes14071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Fagopylum tatarium (L.) Gaertn (buckwheat) can be used both as medicine and food and is also an important food crop in barren areas and has great economic value. Exploring the molecular mechanisms of the response to cadmium (Cd) stress can provide the theoretical reference for improving the buckwheat yield and quality. In this study, perennial tartary buckwheat DK19 was used as the experimental material, its key metabolic pathways in the response to Cd stress were identified and verified through transcriptomic and metabolomic data analysis. In this investigation, 1798 metabolites were identified through non-targeted metabolomic analysis containing 1091 up-regulated and 984down-regulated metabolites after treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differential metabolites was significantly enriched in galactose metabolism, glycerol metabolism, phenylpropane biosynthesis, glutathione metabolism, starch and sucrose metabolism. Linkage analysis detected 11 differentially expressed genes (DEGs) in the galactose metabolism pathway, 8 candidate DEGs in the lipid metabolism pathway, and 20 candidate DEGs in the glutathione metabolism pathway. The results of our study provided useful clues for genetically improving the resistance to cadmium by analyzing the molecular mechanism of cadmium tolerance in buckwheat.
Collapse
Affiliation(s)
- Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1653. [PMID: 37111876 PMCID: PMC10141480 DOI: 10.3390/plants12081653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths and weaknesses, and the effects of microorganisms on metallophytes and plant endophytes resistant to trace elements (TEs) were summarised and described in this manuscript. Prospectively, bio-combined phytoremediation with microorganisms appears to be an ideal, economically viable and environmentally sound solution. The novelty of the work is the description of the potential of "green roofs" to contribute to the capture and accumulation of many metal-bearing and suspended dust and other toxic compounds resulting from anthropopressure. Attention was drawn to the great potential of using phytoremediation on less contaminated soils located along traffic routes and urban parks and green spaces. It also focused on the supportive treatments for phytoremediation using genetic engineering, sorbents, phytohormones, microbiota, microalgae or nanoparticles and highlighted the important role of energy crops in phytoremediation. Perceptions of phytoremediation on different continents are also presented, and new international perspectives are presented. Further development of phytoremediation requires much more funding and increased interdisciplinary research in this direction.
Collapse
Affiliation(s)
- Agnieszka Mocek-Płóciniak
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Justyna Mencel
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Wiktor Zakrzewski
- Regional Chemical and Agricultural Station in Poznan, Sieradzka 29, 60-163 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
5
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|