1
|
Wang L, Geng Y, Liu L, Wang J, Chen J, Li Y, Wang J, Song L, Sun K, Yan Y, Zhou S, Tian D, Lin R, Yao H. Synthesis, anti-allergic rhinitis evaluation and mechanism investigation of novel 1,2,4-triazole-enamides as CB1 R antagonist. Eur J Med Chem 2025; 289:117461. [PMID: 40048796 DOI: 10.1016/j.ejmech.2025.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Allergic rhinitis (AR) is a non-infectious inflammatory disease and affects nearly half of the world's population currently, thus becoming a global health problem. In our study, a series of 1,2,4-triazole enamides were designed and used to evaluate the anti-inflammatory activity of AR. We found that compound 11g could significantly reduce the increased expression of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in Raw264.7 cells induced by lipopolysaccharides (LPS), and inhibit the expression of inflammation through MAPK pathway and NF-κB pathway by influencing the expression of cannabinoid-1 receptor (CB1 R). In the AR mice model, 11g can significantly reduce the number of inflammatory cells in Nasal lavage fluids (NLF), showing a good effect on the treatment of AR. This study provides a new and effective candidate for treatment of AR.
Collapse
Affiliation(s)
- Lu Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Lifang Liu
- Department of Biopharmaceutical Sciences, College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jun Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yunying Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Jingbo Wang
- Department of Biopharmaceutical Sciences, College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kexin Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yajie Yan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Shiqing Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Dan Tian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ran Lin
- Department of Biopharmaceutical Sciences, College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Guo J, Xu Y, Liu J, Hou X. The involvement of lidocaine in amyloid-β1-42-dependent mitochondrial dysfunction and apoptosis in hippocampal neurons via nerve growth factor-protein kinase B pathway. Neuroreport 2024; 35:1123-1132. [PMID: 39445521 DOI: 10.1097/wnr.0000000000002105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This project is conceived to reveal the role of lidocaine in the process of Alzheimer's disease (AD) and its possible downstream targets. After the employment of AD cell model in mice hippocampal neuronal HT-22 cells in the presence of amyloid-β1-42 (Aβ1-42), Cell Counting Kit-8 method investigated cell viability. Oxidative damage was assayed based on a dichloro-dihydro-fluorescein diacetate fluorescent probe and commercially available kits. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide fluorescent probe estimated mitochondrial function. Terminal-deoxynucleotidyl transferase mediated nick end labeling, western blotting, and immunofluorescence appraised the apoptotic level. Western blot also ascertained the alternations of nerve growth factors (NGF)-protein kinase B (Akt) pathway-related proteins. Aβ1-42 concentration dependently triggered the viability loss, oxidative damage, and apoptosis in HT-22 cells. Lidocaine promoted the viability and reduced the mitochondrial impairment and mitochondria-dependent apoptosis in Aβ1-42-treated HT-22 cells in a concentration-dependent manner. Besides, lidocaine activated the NGF-Akt pathway and NGF absence blocked NGF-Akt pathway, aggravated mitochondrial dysfunction as well as mitochondria-dependent apoptosis in lidocaine-administrated HT-22 cells in response to Aβ1-42. Altogether, these observations concluded that lidocaine might stimulate NGF-Akt pathway to confer protection against mitochondrial impairment and apoptosis in Aβ1-42-mediated cellular model of AD.
Collapse
Affiliation(s)
- Jianlian Guo
- Department of Surgical Anesthesiology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | | |
Collapse
|
3
|
Kölükçü V, Gürler Balta M, Tapar H, Karaman T, Karaman S, Unsal V, Gevrek F, Yalçın K, Fırat F. Is there any effect of lidocaine on ischemia/reperfusion injury in testicular torsion? An experimental study. ULUS TRAVMA ACIL CER 2024; 30:708-714. [PMID: 39382361 PMCID: PMC11622711 DOI: 10.14744/tjtes.2024.54534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND This experimental study aimed to evaluate the potential protective effects of lidocaine on ischemia-reperfusion injury resulting from testicular torsion/detorsion in rats. METHODS A total of 18 male rats were randomized into three groups. Group 1 served as the control group. Group 2 was designed to evaluate testicular ischemia-reperfusion injury using a torsion/detorsion model. In Group 3, the treatment group, a similar ischemia-reperfusion model was used as in Group 2. Additionally, lidocaine at a dose of 15 mg/kg was administered intraperitoneally five minutes before reperfusion. Blood biochemical analyses and testicular histopathological evaluations were conducted. RESULTS Blood biochemical analysis showed that malondialdehyde (MDA) and protein carbonyl (PC) levels were significantly higher in Group 2 compared to the other groups (p<0.001 and p=0.008, respectively). Proinflammatory cytokine levels, including interleu-kin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha), were lower in Group 3 than in Group 2 (p<0.001, p=0.007, and p=0.026, respectively). Antioxidant enzyme activities, including glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), were higher in Group 3 compared to Group 2 (p=0.005 and p=0.025, respectively). Histopathological evaluations revealed significant improvements in all testicular damage scores, including hemorrhage, edema, vasocongestion, and inflammation in Group 3 compared to Group 2 (p=0.015, p=0.035, p=0.015, and p=0.034, respectively). Additionally, there was a notable improvement in the Johnsen score in Group 3 compared to Group 2 (p=0.034). CONCLUSION Lidocaine, an effective local anesthetic, significantly alleviates the effects of testicular ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Vildan Kölükçü
- Department of Anesthesiology and Reanimation, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| | - Mehtap Gürler Balta
- Department of Anesthesiology and Reanimation, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| | - Hakan Tapar
- Department of Anesthesiology and Reanimation, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| | - Tugba Karaman
- Department of Anesthesiology and Reanimation, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| | - Serkan Karaman
- Department of Anesthesiology and Reanimation, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| | - Velid Unsal
- Mardin Artuklu University, Faculty of Health Sciences and Central Research Laboratory, Mardin-Türkiye
| | - Fikret Gevrek
- Department of Histology and Embryology, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| | - Kenan Yalçın
- Department of Urology, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| | - Fatih Fırat
- Department of Urology, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat-Türkiye
| |
Collapse
|
4
|
Lu J, Tang X, Zhang Y, Chu H, Jing C, Wang Y, Lou H, Zhu Z, Zhao D, Sun L, Cong D. Exploring the molecular mechanism of Yinao Fujian formula on ischemic stroke based on network pharmacology and experimental verification. Heliyon 2024; 10:e23742. [PMID: 38205280 PMCID: PMC10776953 DOI: 10.1016/j.heliyon.2023.e23742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Background Ischemic stroke (IS) is a leading cause of long-term disability and even mortality, threatening people's lives. Yinao Fujian (YNFJ) formula is a Traditional Chinese Medicine formula that has been widely used to treat patients with IS. However, the molecular mechanism of YNFJ for the treatment of IS is still elusive. Our study aimed to explore the potential protective effect and the underlying mechanisms of YNFJ on IS using a network pharmacology approach coupled with experimental validation. Materials and methods Effective compounds of YNFJ were collected from BATMAN-TCM and TCMSP databases, while IS targets were obtained from GeneCards, OMIM, TTD and DrugBank databases. The protein-protein interaction (PPI) network was constructed to further screen the hub targets of YNFJ in IS treatment. GO and KEGG enrichment analyses were used to identify the critical biological processes and signaling pathways of YNFJ for IS. Moreover, Nissl staining, HE, TTC staining and Tunel staining were used in the MCAO model to prove the neuroprotective effect of YNFJ. Oxidative damage, inflammatory factor release and related pathways were tested in MCAO rat model and hypoxia-induced BV2 cell model, respectively. Results We found that YNFJ treatment significantly alleviated MCAO-induced nerve damage and apoptosis. Then, network pharmacology screening combined with literature research revealed IL6, TNF, PTGS2, NFKBIA and NFE2L2 as the critical targets in a PPI network. Moreover, the top 20 signaling pathways and biological processes associated with the protective effects of YNFJ on IS were enriched through GO and KEGG analyses. Further analysis indicated that NF-κB and Nrf2/HO-1 signaling pathways might be highly involved in the protective effects of YNFJ on IS. Finally, in vitro and in vivo experiments confirmed that YNFJ inhibited the release of inflammatory factors (IL-6 and TNF-α) and MDA content, and increased the activity of SOD. In terms of the mechanism, YNFJ inhibited the release of inflammatory factors by suppressing the NF-κB pathway and decreased the expression of iNOS and COX-2 to protect microglia from inflammation damage. In addition, YNFJ initiated the dissociation of Keap-1 and Nrf2, and activated the downstream protein HO-1, NQO1, thus decreasing oxidative stress. Conclusion Taken together, the findings in our research showed that the protective effects of YNFJ on IS were mainly achieved by regulating the NF-κB and Nrf2/HO-1 signaling pathways to inhibit oxidative stress damage and inflammatory damage of microglia.
Collapse
Affiliation(s)
- Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Xiaolei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Yuxin Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Hongbo Chu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Yufeng Wang
- Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Huijuan Lou
- Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Ziqi Zhu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Jilin, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Deyu Cong
- Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
5
|
Wang YH, Long HP, Zhang SX, Liu J, Zhao HQ, Yi J, Linga J. Network pharmacology-based and pharmacological evaluation of the effects of Curcumae Radix on cerebral ischemia–Reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.370154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
6
|
Hao T, Chen C, Yang S, Zhang Y, Liang F. Mangiferin exerts neuroprotective effects against focal cerebral ischemia in mice by regulating NF-κB signaling pathway. Metab Brain Dis 2023; 38:383-391. [PMID: 36322276 DOI: 10.1007/s11011-022-01066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Mangiferin is a natural free radical scavenging antioxidant that induces excitation of the central nervous system. However, the mechanism of neuroprotective effect of mangiferin on focal cerebral ischemia has not been fully investigated. The aim of this study was to investigate the protective effect of mangiferin on focal cerebral ischemia in mice. METHODS Middle cerebral artery occlusion (MCAO) was performed to investigate the effect of mangiferin on focal cerebral ischemia. Mice were randomly divided into 5 groups: sham, MCAO, MCAO + 5 mg/kg mangiferin, MCAO + 20 mg/kg mangiferin and MCAO + 5 mg/kg nimodipine. Neurobehavioral scores, brain edema, brain injury scores, relative infarct size and expression of some inflammatory factors in the brain were evaluated. NF-κB pathway was detected by Western blotting and immunofluorescence. RESULTS The results showed that mangiferin effectively attenuated MCAO-induced brain injury, including improvement of neurological impairment, reduction of brain edema, and reduction of infarct size. Compared with the MCAO group, mangiferin significantly inhibited MCAO-induced neuroinflammation, which can be proved by reduced expression levels of TNF-α, IL-1β, iNOS and COX-2. In addition, we found that phosphorylation of IκBα was inhibited and the expression of NF-κB p65 in the nucleus was reduced after the addition of mangiferin. CONCLUSION Our study suggested that mangiferin exerts neuroprotective effects on focal cerebral ischemia in mice by regulating the NF-κB signaling pathway. Mangiferin may be an effective treatment for cerebral ischemia and other neurological disorders.
Collapse
Affiliation(s)
- Tianpao Hao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Southern white elephant town, Ouhai district, 325000, Wenzhou, China
| | - Shen Yang
- Departments of Neurology, Wuhu NO.1 People's Hospital, 241000, Wuhu, NO, China
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Feiyu Liang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Southern white elephant town, Ouhai district, 325000, Wenzhou, China.
| |
Collapse
|
7
|
Hung KC, Ho CN, Liu WC, Yew M, Chang YJ, Lin YT, Hung IY, Chen JY, Huang PW, Sun CK. Prophylactic effect of intravenous lidocaine against cognitive deficit after cardiac surgery: A PRISMA-compliant meta-analysis and trial sequential analysis. Medicine (Baltimore) 2022; 101:e30476. [PMID: 36107567 PMCID: PMC9439840 DOI: 10.1097/md.0000000000030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study aimed at providing an updated evidence of the association between intraoperative lidocaine and risk of postcardiac surgery cognitive deficit. METHODS Randomized clinical trials (RCTs) investigating effects of intravenous lidocaine against cognitive deficit in adults undergoing cardiac surgeries were retrieved from the EMBASE, MEDLINE, Google scholar, and Cochrane controlled trials register databases from inception till May 2021. Risk of cognitive deficit was the primary endpoint, while secondary endpoints were length of stay (LOS) in intensive care unit/hospital. Impact of individual studies and cumulative evidence reliability were evaluated with sensitivity analyses and trial sequential analysis, respectively. RESULTS Six RCTs involving 963 patients published from 1999 to 2019 were included. In early postoperative period (i.e., 2 weeks), the use of intravenous lidocaine (overall incidence = 14.8%) was associated with a lower risk of cognitive deficit compared to that with placebo (overall incidence = 33.1%) (relative risk = 0.49, 95% confidence interval: 0.32-0.75). However, sensitivity analysis and trial sequential analysis signified insufficient evidence to arrive at a firm conclusion. In the late postoperative period (i.e., 6-10 weeks), perioperative intravenous lidocaine (overall incidence = 37.9%) did not reduce the risk of cognitive deficit (relative risk = 0.99, 95% confidence interval: 0.84) compared to the placebo (overall incidence = 38.6%). Intravenous lidocaine was associated with a shortened LOS in intensive care unit/hospital with weak evidence. CONCLUSION Our results indicated a prophylactic effect of intravenous lidocaine against cognitive deficit only at the early postoperative period despite insufficient evidence. Further large-scale studies are warranted to assess its use for the prevention of cognitive deficit and enhancement of recovery (e.g., LOS).
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Chun-Ning Ho
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Wei-Cheng Liu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Ming Yew
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Ying-Jen Chang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Yao-Tsung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - I-Yin Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Ping-Wen Huang
- Department of Emergency Medicine, Show Chwan Memorial Hospital, Changhua city, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung city, Taiwan
- College of Medicine, I-Shou University, Kaohsiung city, Taiwan
- *Correspondence: Cheuk-Kwan Sun, Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan, No.1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (e-mail: )
| |
Collapse
|
8
|
Exosomes Released from Bone-Marrow Stem Cells Ameliorate Hippocampal Neuronal Injury Through transferring miR-455-3p. J Stroke Cerebrovasc Dis 2022; 31:106142. [DOI: 10.1016/j.jstrokecerebrovasdis.2021.106142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
|
9
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
10
|
Ma X, Yan W, He N. Lidocaine attenuates hypoxia/reoxygenation‑induced inflammation, apoptosis and ferroptosis in lung epithelial cells by regulating the p38 MAPK pathway. Mol Med Rep 2022; 25:150. [PMID: 35244190 PMCID: PMC8941375 DOI: 10.3892/mmr.2022.12666] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022] Open
Abstract
Lung ischemia-reperfusion (I/R) injury poses a serious threat to human health, worldwide. The current study aimed to determine the role of lidocaine in A549 cells, in addition to the involvement of the p38 MAPK pathway. Oxygen deprivation/reoxygenation-induced A549 cells were utilized to simulate I/R injury in vitro. Cell viability and apoptosis were detected using MTT and TUNEL assays, respectively. The levels of IL-6, IL-8, TNF-α, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase, iron and reactive oxygen species (ROS) were measured using corresponding commercial kits. The corresponding protein expression levels were also measured using western blotting. Moreover, a monolayer cell paracellular permeability assay was performed to determine the permeability of A549 cells. The results demonstrated that, whilst lidocaine had no influence on untreated A549 cells, it significantly increased the viability of hypoxia/reoxygenation (H/R)-induced A549 cells. A549 cell apoptosis and the release of inflammatory cytokines in the H/R group were decreased after the addition of lidocaine. When compared with the H/R group, increased MDA level and decreased SOD level were observed in H/R-induced A549 cells following lidocaine treatment. In addition, the permeability of H/R-induced A549 cells was markedly decreased following lidocaine treatment. Compared with the H/R group, the expression levels of tight junction and ferroptosis-related proteins were significantly upregulated by lidocaine, whereas the expression of transferrin was downregulated. However, p79350, an agonist of p38, reversed the effects of lidocaine on H/R-induced A549 cells. In conclusion, lidocaine exerted a protective role in HR-induced lung epithelial cell injury, which may serve as a potential agent for the treatment of patients with lung I/R injury.
Collapse
Affiliation(s)
- Xiaojun Ma
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weihua Yan
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na He
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| |
Collapse
|
11
|
Xiang J, Yang Z, Zhou Q. Lidocaine relieves murine allergic rhinitis by regulating the NF-κB and p38 MAPK pathways. Exp Ther Med 2022; 23:193. [PMID: 35126696 PMCID: PMC8794549 DOI: 10.3892/etm.2022.11116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Allergic rhinitis (AR) is one of the most common chronic inflammatory diseases and its main feature is nasal mucositis. It has been recently revealed that lidocaine demonstrates optimal effects in the treatment of various diseases. However, a limited number of studies have examined the association between lidocaine and AR. In the present study, the AR mouse model was established to explore the effects of lidocaine in AR and to further analyze its molecular mechanism. Subsequently, different concentrations of lidocaine were provided to the animals by intranasal administration and a series of indices were assessed. The data indicated that the frequencies of mouse sneezing and nose rubbing were suppressed following an increase in lidocaine concentration. Subsequently, the number of inflammatory cells was measured. Wright's-Giemsa staining results indicated that lidocaine significantly decreased the numbers of leukocytes, eosinophils, neutrophils and lymphocytes in the nasal lavage fluid (NLF) of AR mice. In addition, the expression levels of ovalbumin (OVA)-specific immunoglobulin E (IgE), leukotriene C4 (LTC4) and certain inflammatory factors were assessed by ELISA. Lidocaine reduced OVA-specific IgE and LTC4 expression in NLF and plasma derived from AR mice. It also decreased the expression levels of IL-4, IL-5, IL-13, IL-17 and TNF-α. Lidocaine caused upregulation of IFN-γ and IL-2 expression levels. Subsequently, western blot analysis indicated that lidocaine suppressed phosphorylated (p)-p38 and p-p65 expression levels in AR mice. Collectively, the results indicated that the NF-κB and p38 MAPK signaling pathways were involved in the lidocaine-mediated relief of AR in mice. In order to further verify the association between the NF-κB and p38 MAPK signaling pathways and AR in mice, the effects of the NF-κB inhibitor IMD-0354 and the p38 MAPK inhibitor SB 203580 were assessed on AR mice. The results indicated that these two compounds exhibited similar inhibitory effects on AR mice as those noted with the use of lidocaine. These findings suggested that lidocaine represented a novel therapeutic agent for AR.
Collapse
Affiliation(s)
- Jing Xiang
- Department of Anesthesiology, Wuhan Jinyintan Hospital, Wuhan, Hubei 430000, P.R. China
| | - Zhen Yang
- Department of Anesthesiology, Wuhan Jinyintan Hospital, Wuhan, Hubei 430000, P.R. China
| | - Qiang Zhou
- Department of Anesthesiology, Wuhan Jinyintan Hospital, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
12
|
Lei Z, Luan F, Zhang X, Peng L, Li B, Peng X, Liu Y, Liu R, Zeng N. Piperazine ferulate protects against cardiac ischemia/reperfusion injury in rat via the suppression of NLRP3 inflammasome activation and pyroptosis. Eur J Pharmacol 2022; 920:174856. [DOI: 10.1016/j.ejphar.2022.174856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
|
13
|
Tsai YT, Huang HC, Kao ST, Chang TT, Cheng CY. Neuroprotective Effects of Alpinia oxyphylla Miq against Mitochondria-Related Apoptosis by the Interactions between Upregulated p38 MAPK Signaling and Downregulated JNK Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2057-2083. [DOI: 10.1142/s0192415x22500884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis in the penumbra region is the major cell death mechanism occurring during ischemia–reperfusion injury’s early phase. Here, we evaluated how the Alpinia oxyphylla Miq (AOM) affects mitochondria-related apoptosis 3 days after transient middle cerebral artery occlusion (MCAo) and examined the mechanisms underlying the regulation of MAPK-mediated mitochondria-related apoptotic signaling in the peri-infarct cortex in rats. The rats were administered the AOM extract intraperitoneally at doses of 0.2[Formula: see text]g/kg (AOM-0.2[Formula: see text]g), 0.4[Formula: see text]g/kg (AOM-0.4[Formula: see text]g), or 0.8[Formula: see text]g/kg (AOM-0.8[Formula: see text]g) at MCAo initiation. The AOM-0.4[Formula: see text]g and AOM-0.8[Formula: see text]g significantly ameliorated apoptotic cell death and considerably downregulated cytochrome c (cyto c) and cleaved caspase-3 immunoreactivity 3 days after reperfusion. Simultaneously, they significantly downregulated cytosolic p-JNK/JNK, cathepsin B/actin, cyto c/actin, Smac/DIABLO/actin, cleaved caspase-3/actin, and AIF/actin and mitochondrial p53/HSP60 and Bax/HSP60 fractions but upregulated cytosolic p-p38 MAPK/p38 MAPK, p-p90RSK/actin, p-Bad/Bad, p-CREB/actin, and XIAP/actin and cytosolic and mitochondrial Bcl-2/Bax and Bcl-xL/Bax fractions in the peri-infarct cortex. Pretreatment with SB203580 — a p38 MAPK inhibitor — completely abrogated the effects of AOM-0.8[Formula: see text]g on the aforementioned protein expression, whereas treatment with SP600125 — a JNK inhibitor — exerted protective effects similar to those of AOM-0.8[Formula: see text]g. Treatment with 0.4 or 0.8[Formula: see text]g/kg AOM has neuroprotective effects against mitochondria-related apoptosis by suppressing cyto c, Smac/DIABLO, and AIF release from the mitochondria to cytosol. The anti-mitochondria related apoptotic effects of the AOM extract are attributable to the interactions between upregulated p38 MAPK/p90RSK-mediated p-Bad and CREB signaling and downregulated JNK/cathepsin B-mediated Bax and p53 signaling in the peri-infarct cortex 3 days after transient MCAo.
Collapse
Affiliation(s)
- Yueh-Ting Tsai
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Traditional Chinese Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Tung-Ti Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 42056, Taiwan
| |
Collapse
|
14
|
Zhang HT, Wang XZ, Zhang QM, Zhao H. Neuroprotection of chromobox 7 knockout in the mouse after cerebral ischemia-reperfusion injury via nuclear factor E2-related factor 2/hemeoxygenase-1 signaling pathway. Hum Exp Toxicol 2022; 41:9603271221094660. [PMID: 35435747 DOI: 10.1177/09603271221094660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore the mechanism of chromobox 7 (CBX7)-mediated nuclear factor E2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway in the cerebral ischemia/reperfusion (I/R) injury. METHODS The experimental wild-type (WT) and CBX7-/- mice were used to establish cerebral I/R models using the middle cerebral artery occlusion (MCAO) surgery to determine CBX7 levels at different time points after MCAO injury. For all mice, neurological behavior, infarct size, water content, and oxidative stress-related indicators were determined, and transferase (TdT)-mediated dUTP-biotin nick-end labeling (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)) staining method was employed to observe cell apoptosis, while Western blot to measure the expression of CBX7 and Nrf/HO-1 pathway-related proteins. RESULTS At 6 h, 12 h, 24 h, 3 days, and 7 days after mice with MCAO, CBX7 expression was gradually up-regulated and the peak level was reached at 24 h. Mice in the WT + MCAO group had increased infarct size, with significant increases in the modified neurological severity scores and water content in the brain, as well as the quantity of TUNEL-positive cells. For the oxidative stress-indicators, an increase was seen in the content of MDA (malondial dehyde), but the activity of SOD (superoxide dismutase) and content of GSH-PX (glutathione peroxidase) and CAT (catalase) were decreased; meanwhile, the protein expression of CBX7, HO-1, and nuclear Nrf2 was up-regulated, while the cytoplasmic Nrf2 was down-regulated. Moreover, CBX7 knockout attenuated I/R injury in mice. CONCLUSION Knockout of CBX7 may protect mice from cerebral I/R injury by reducing cell apoptosis and oxidative stress, possibly via activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xi-Zeng Wang
- The Third Department of Surgery, Xintai Hospital of Traditional Chinese Medicine, Xintai, China
| | - Qing-Mei Zhang
- Department of Nursing, Shandong Liaocheng Veteran Hospital, Liaocheng City, China
| | - Han Zhao
- Department of Neurosurgery, 230965Taian Central Hospital, Taian, China
| |
Collapse
|
15
|
Liu Y, Liu L, Xing W, Sun Y. Anesthetics mediated the immunomodulatory effects via regulation of TLR signaling. Int Immunopharmacol 2021; 101:108357. [PMID: 34785143 DOI: 10.1016/j.intimp.2021.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Anesthetics have been widely used in surgery and found to suppress inflammatory injury and affect the outcomes of the surgery and diseases. In contrast, anesthetics are also found to induce neuronal injury and inflammation. However, the immune-modulation mechanism of anesthetics is still not clear. Recent studies have shown that the immune-modulation of anesthetics is associated with the regulation of toll-like receptor (TLR)-mediated signaling. Moreover, the regulation of anesthetics in TLR signaling is related to modulations of non-coding RNAs (nc RNAs). Consistently, nc RNAs are mainly divided into micro RNAs (miRs) and long non-coding RNAs (lnc RNAs), which have been found to exert regulatory effects on the immune system. In this review, we summarize the immunomodulatory functions of the widely used anesthetic agents, which are associated with regulation of TLR signaling. In addition, we also focus on the roles of nc RNAs induced by anesthetics in regulations of TLR signaling.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Li Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
16
|
Rizk S, Taha H, Abdel Moneim AE, Amin HK. Neuroprotective effect of green and roasted coffee bean extracts on cerebral ischemia-induced injury in rats. Metab Brain Dis 2021; 36:1943-1956. [PMID: 34228267 DOI: 10.1007/s11011-021-00769-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Stroke is a lethal event with a high incidence in Egypt. Quick early intervention can be lifesaving. Transient global ischemia (TGI), a type of ischemic stroke, is mainly instigated by cardiac arrest. Ischemia followed by reperfusion causes further neuronal cell damage. In this study, we aimed to evaluate the potential apoptotic, anti-inflammatory, and neuroprotective effects of green (GCBE) and roasted (RCBE) coffee bean water extract against transient global ischemia-induced via a bilateral common carotid artery occlusion (CAO) in rats. Before CAO, 1.5 ml/kg body weight/day of GCBE or RCBE was administered for 14 days by oral gavage. Ischemia/reperfusion (I/R) and sham groups were treated with a vehicle. Oxidative stress biomarkers and antioxidant enzyme activities, such as MDA, NO, GSH, SOD, CAT, GR, GPx, inflammatory markers TNF-α, IL-1β, and NF-κB, and BDNF were investigated. Quantitative real-time PCR analysis of mitogen-activated protein kinase pathways, in addition to heme oxygenase 1, and nuclear factor erythroid 2-related factor 2 were determined. Apoptotic markers, including Bcl-2, Bax, and caspase 3, in addition to the vascular endothelial growth factor-a, were investigated, followed by an examination of hippocampal histopathology. Pre-administration of GCBE and RCBE improved neurological function and neuronal survival, suppressed the spread of oxidative stress, inflammation, and apoptosis, and reversed most of the pathological changes. However, green coffee bean extract was more effective than roasted coffee bean extract, perhaps due to the roasting process, which may affect active compounds. In conclusion, GCBE and RCBE represent a potential clinical strategy for pre-ischemic conditioning.
Collapse
Affiliation(s)
- Sara Rizk
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
17
|
Zhang HT, Wang XZ, Zhang QM, Zhao H. Neuroprotection of chromobox 7 knockout in the mouse after cerebral ischemia-reperfusion injury via nuclear factor E2-related factor 2/hemeoxygenase-1 signaling pathway. Hum Exp Toxicol 2021; 40:S178-S186. [PMID: 34353139 DOI: 10.1177/09603271211036122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the mechanism of chromobox 7 (CBX7)-mediated nuclear factor E2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway in the cerebral ischemia/reperfusion (I/R) injury. METHODS The experimental wild-type (WT) and CBX7-/- mice were used to establish cerebral I/R models using the middle cerebral artery occlusion (MCAO) surgery to determine CBX7 levels at different time points after MCAO injury. For all mice, neurological behavior, infarct size, water content, and oxidative stress-related indicators were determined, and transferase (TdT)-mediated dUTP-biotin nick-end labeling (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)) staining method was employed to observe cell apoptosis, while Western blot to measure the expression of CBX7 and Nrf/HO-1 pathway-related proteins. RESULTS At 6 h, 12 h, 24 h, 3 days, and 7 days after mice with MCAO, CBX7 expression was gradually up-regulated and the peak level was reached at 24 h. Mice in the WT + MCAO group had increased infarct size, with significant increases in the modified neurological severity scores and water content in the brain, as well as the quantity of TUNEL-positive cells. For the oxidative stress-indicators, an increase was seen in the content of MDA (malondial dehyde), but the activity of SOD (superoxide dismutase) and content of GSH-PX (glutathione peroxidase) and CAT (catalase) were decreased; meanwhile, the protein expression of CBX7, HO-1, and nuclear Nrf2 was up-regulated, while the cytoplasmic Nrf2 was down-regulated. Moreover, CBX7 knockout attenuated I/R injury in mice. CONCLUSION Knockout of CBX7 may protect mice from cerebral I/R injury by reducing cell apoptosis and oxidative stress, possibly via activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xi-Zeng Wang
- The Third Department of Surgery, Xintai Hospital of Traditional Chinese Medicine, Xintai, China
| | - Qing-Mei Zhang
- Department of Nursing, Shandong Liaocheng Veteran Hospital, Liaocheng City, China
| | - Han Zhao
- Department of Neurosurgery, 230965Taian Central Hospital, Taian, China
| |
Collapse
|
18
|
Sun M, Huang S, Gao Y. Lidocaine inhibits the proliferation and metastasis of epithelial ovarian cancer through the Wnt/β-catenin pathway. Transl Cancer Res 2021; 10:3479-3490. [PMID: 35116652 PMCID: PMC8799064 DOI: 10.21037/tcr-21-1047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lidocaine, an amide local anesthetic, has recently been found to have anticancer action in various cancer cells. However, the role of lidocaine in epithelial ovarian cancer (EOC) remains largely unknown. In the present study, we investigated how lidocaine regulates the progression of EOC. METHODS Real-time polymerase chain reaction was used to examine the expression of Snail, Wnt, β-catenin, E-cadherin, vimentin, matrix metalloproteinase (MMP)-7, MMP-9, and vascular endothelial growth factor in lidocaine-treated cells. Cell proliferation assays, cell apoptosis assays, and cell migration assays were employed to verify the function of lidocaine in EOC cells. Cell proliferation and cell migration assays were employed to verify the function of Wnt/β-catenin signaling in lidocaine-treated EOC cells together with Wnt-overexpressing plasmids or inhibitor NVP-XAV939. RESULTS Lidocaine could inhibit proliferation, migration, and invasion, and induce apoptosis in ovarian cancer cells lines in a dose-dependent manner. Wnt/β-catenin signaling was involved in the suppression of epithelial-mesenchymal transition progression of ovarian cancer cells, which resulted in the downregulation of Snail and vimentin, as well as the upregulation of E-cadherin. Furthermore, overexpressed Wnt could reverse the carcinostatic effect of lidocaine, while Wnt inhibitor XAV-939 synergistically enhanced the antitumor effect of lidocaine. CONCLUSIONS Mechanistically, lidocaine could inhibit the proliferation and metastasis of EOC by the Wnt/β-catenin pathway to regulate the progression of EOC.
Collapse
Affiliation(s)
- Mei Sun
- Department of Anesthesiology, the Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, China
| | - Saisai Huang
- Department of Anesthesiology, the Affiliated Hospital of Nantong University, Nantong, China
| | - Yongtao Gao
- Department of Anesthesiology, the Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Feng W. Tectorigenin attenuates cognitive impairments in mice with chronic cerebral ischemia by inhibiting the TLR4/NF-κB signaling pathway. Biosci Biotechnol Biochem 2021; 85:1665-1674. [PMID: 34014269 DOI: 10.1093/bbb/zbab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
This study aims to explore the effect of Tectorigenin in chronic cerebral ischemia (CCI)-induced cognitive impairment mice model. Cognitive impairment, hippocampal tissue histopathology, and myelin density in CCI mice were detected. HT22 cells were used to induce oxygen-glucose deprivation/reperfusion (OGD/R) injury. Cell viability and apoptosis of transfected HT22 cells and toll-like receptor-4 (TLR4)/nuclear factor-kappaB (NF-κB) pathway-related factor levels in hippocampal tissue and OGD/R models were detected. CCI caused cognitive impairment, hippocampal damage, and decreased myelin density in mice while promoting interleukin-1β, tumor necrosis factor-alpha, TLR4, myeloid differentiation primary response gene 88, p-p65, NLRP3, and ASC levels. Tectorigenin reversed the effects of CCI in mice and reversed the promoting effects of OGD/R on apoptosis and TLR4/NF-κB pathway-related factors levels, while overexpressed TLR4 reversed the effects of Tectorigenin in OGD/R-induced HT-22 cells. Tectorigenin alleviated cognitive impairment in CCI mice by inhibiting the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Feng
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province, China
| |
Collapse
|
20
|
Xing F, Liu Y, Dong R, Cheng Y. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a. Exp Anim 2021; 70:126-136. [PMID: 33116025 PMCID: PMC7887619 DOI: 10.1538/expanim.20-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.
Collapse
Affiliation(s)
- Fangyuan Xing
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Yongrong Liu
- Department of Ultrasound, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ruifang Dong
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ye Cheng
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| |
Collapse
|
21
|
Dobson GP, Biros E, Letson HL, Morris JL. Living in a Hostile World: Inflammation, New Drug Development, and Coronavirus. Front Immunol 2021; 11:610131. [PMID: 33552070 PMCID: PMC7862725 DOI: 10.3389/fimmu.2020.610131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
We present a brief history of the immune response and show that Metchnikoff's theory of inflammation and phagocytotic defense was largely ignored in the 20th century. For decades, the immune response was believed to be triggered centrally, until Lafferty and Cunningham proposed the initiating signal came from the tissues. This shift opened the way for Janeway's pattern recognition receptor theory, and Matzinger's danger model. All models failed to appreciate that without inflammation, there can be no immune response. The situation changed in the 1990s when cytokine biology was rapidly advancing, and the immune system's role expanded from host defense, to the maintenance of host health. An inflammatory environment, produced by immune cells themselves, was now recognized as mandatory for their attack, removal and repair functions after an infection or injury. We explore the cellular programs of the immune response, and the role played by cytokines and other mediators to tailor the right response, at the right time. Normally, the immune response is robust, self-limiting and restorative. However, when the antigen load or trauma exceeds the body's internal tolerances, as witnessed in some COVID-19 patients, excessive inflammation can lead to increased sympathetic outflows, cardiac dysfunction, coagulopathy, endothelial and metabolic dysfunction, multiple organ failure and death. Currently, there are few drug therapies to reduce excessive inflammation and immune dysfunction. We have been developing an intravenous (IV) fluid therapy comprising adenosine, lidocaine and Mg2+ (ALM) that confers a survival advantage by preventing excessive inflammation initiated by sepsis, endotoxemia and sterile trauma. The multi-pronged protection appears to be unique and may provide a tool to examine the intersection points in the immune response to infection or injury, and possible ways to prevent secondary tissue damage, such as that reported in patients with COVID-19.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | | | |
Collapse
|