1
|
Pan H, Luo Z, Lin F, Zhang J, Xiong T, Hong Y, Sun B, Yang Y. FN1, a reliable prognostic biomarker for thyroid cancer, is associated with tumor immunity and an unfavorable prognosis. Oncol Lett 2024; 28:510. [PMID: 39268167 PMCID: PMC11391506 DOI: 10.3892/ol.2024.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/10/2024] [Indexed: 09/15/2024] Open
Abstract
Thyroid cancer (THCA) is a malignant tumor that affects the endocrine system. At present, an effective treatment for THCA remains elusive, particularly for medullary carcinoma and undifferentiated carcinoma, due to the lack of suitable medications and prognostic markers. Patient RNA-sequencing and clinical data were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression databases. Protein-protein interaction analyses were performed for differentially expressed genes related to THCA. Moreover, the associations between fibronectin 1 (FN1), clinical data, immune checkpoint genes and immune cell infiltration was assessed. The potential functional role of the FN1 gene was evaluated through gene set enrichment analysis. Immunohistochemistry was used to assess FN1 expression in 103 cases of THCA, comprising 32 with papillary carcinoma, 30 with follicular carcinoma, 35 with medullary carcinoma and 6 with undifferentiated carcinoma. Finally, 11 co-expression modules were constructed and the expression of five identified hub genes (FN1, mucin-1, keratin 19, intracellular adhesion molecule 1 and neural cell adhesion molecule) were evaluated. The results demonstrated that higher FN1 gene expression levels were strongly associated with a higher pathologic stage and tumor stage, and were significantly associated with immune cell infiltration in THCA. Significant increases in FN1 protein expression levels were noted among patients diagnosed with four types of THCA, comprising papillary carcinoma, follicular carcinoma, medullary carcinoma and undifferentiated carcinoma. Patients diagnosed with medullary carcinoma and undifferentiated carcinoma, and with low FN1 expression levels, exhibited a significant survival advantage compared with those with high FN1 expression levels. In conclusion, the present study identified five hub genes involved in the onset and progression of THCA. Furthermore, FN1 could serve as a candidate biomarker and a therapeutic target for THCA and may be a key gene mediating THCA immune infiltration.
Collapse
Affiliation(s)
- Huili Pan
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhiyan Luo
- Department of Ultrasound in Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Feng Lin
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Jing Zhang
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Ting Xiong
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yurong Hong
- Department of Ultrasound in Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Yang
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
2
|
Wang C, Dai S, Zhao X, Zhang Y, Gong L, Fu K, Ma C, Peng C, Li Y. Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomed Pharmacother 2023; 163:114882. [PMID: 37196541 DOI: 10.1016/j.biopha.2023.114882] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
Celastrol is a pentacyclic triterpenoid extracted from the traditional Chinese medicine Tripterygium wilfordii Hook F., which has multiple pharmacological activities. In particular, modern pharmacological studies have demonstrated that celastrol exhibits significant broad-spectrum anticancer activities in the treatment of a variety of cancers, including lung cancer, liver cancer, colorectal cancer, hematological malignancies, gastric cancer, prostate cancer, renal carcinoma, breast cancer, bone tumor, brain tumor, cervical cancer, and ovarian cancer. Therefore, by searching the databases of PubMed, Web of Science, ScienceDirect and CNKI, this review comprehensively summarizes the molecular mechanisms of the anticancer effects of celastrol. According to the data, the anticancer effects of celastrol can be mediated by inhibiting tumor cell proliferation, migration and invasion, inducing cell apoptosis, suppressing autophagy, hindering angiogenesis and inhibiting tumor metastasis. More importantly, PI3K/Akt/mTOR, Bcl-2/Bax-caspase 9/3, EGFR, ROS/JNK, NF-κB, STAT3, JNK/Nrf2/HO-1, VEGF, AR/miR-101, HSF1-LKB1-AMPKα-YAP, Wnt/β-catenin and CIP2A/c-MYC signaling pathways are considered as important molecular targets for the anticancer effects of celastrol. Subsequently, studies of its toxicity and pharmacokinetic properties showed that celastrol has some adverse effects, low oral bioavailability and a narrow therapeutic window. In addition, the current challenges of celastrol and the corresponding therapeutic strategies are also discussed, thus providing a theoretical basis for the development and application of celastrol in the clinic.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Kong F, Li Y, Zhang Y, Zeng Q, Guo X. Elucidation of the potential antioxidant compound and mechanism of mung bean using network pharmacology and in vitro anti-oxidative activity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mung bean is rich in bioactive components, but the main compound and pharmacological mechanism in reducing oxidative and free radical damage are unclear. Network pharmacology and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging activities were employed to uncover the antioxidant mechanism of potentially active compounds, considering the interactions between mung bean targets and oxidative and free radical damage. These key targets were analyzed by protein–protein interactions (PPIs), and key genes were used to find the biological pathway and therapeutic mechanism by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that five antioxidant components and 18 mung bean targets were screened. β-carotene and vitexin both played a crucial role in mung bean against oxidative and free radical damage, and the ABTS radical scavenging activities of β-carotene and vitexin were 94.84 and 87.79%, which were equivalent to those of vitamin C. Key targets may be AR, HSP90AA1, MYC, and CASP3 for mung bean to exert antioxidant activity. GO and KEGG indicated that mung bean may mainly act on thyroid hormone signaling pathway, estrogen signaling pathway, p53 signaling pathway, etc. In vitro antioxidant activity tests showed that the bioactive ingredients of mung beans had great antioxidant activity. Network pharmacology analysis also revealed the underlying molecular mechanisms of oxidative and free radical damage. This study provides new insights and evidence to explore the bioactive compounds and biological functions of food cereals and legumes, as well as a reference for the functional evaluation of food ingredients and the development of functional foods.
Collapse
|
4
|
In vitro activity of celastrol in combination with thymol against carbapenem-resistant Klebsiella pneumoniae isolates. J Antibiot (Tokyo) 2022; 75:679-690. [PMID: 36167781 DOI: 10.1038/s41429-022-00566-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/26/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial and community-acquired infections. Klebsiella has developed resistance against antimicrobials including the last resort class; carbapenem. Currently, treatment options for carbapenem-resistant-Klebsiella (CRK) are very limited. This study aims to restore carbapenem effectiveness against CRK using celastrol and thymol. Clinical Klebsiella isolates were identified using biochemical and molecular methods. Antimicrobial susceptibility was determined using disk-diffusion method. Carbapenemase-production was tested phenotypically and genotypically. Celastrol and thymol-MICs were determined and the carbapenemase-inhibitory effect of sub-MICs was investigated. Among 85 clinical Klebsiella isolates, 72 were multi-drug-resistant and 43 were meropenem-resistant. Phenotypically, 39 isolates were carbapenemase-producer. Genotypically, blaNDM1 was detected in 35 isolates, blaVIM in 17 isolates, blaOXA in 18 isolates, and blaKPC was detected only in 6 isolates. Celastrol showed significant inhibitory effect against carbapenemase-hydrolytic activity. Meropenem-MIC did not decrease in presence of celastrol, only 2-fold decrease was observed with thymol, while 4-64 fold decrease was observed when meropenem was combined with both celastrol and thymol. Furthermore, thymol increased CRK cell wall-permeability. Molecular docking revealed that celastrol is superior to thymol for binding to KPC and VIM-carbapenemase. Our study showed that celastrol is a promising inhibitor of multiple carbapenemases. While meropenem-MIC were not affected by celastrol alone and decreased by only 2-folds with thymol, it decreased by 4-64 folds in presence of both celastrol and thymol. Thymol increases the permeability of CRK-envelope to celastrol. The triple combination (meropenem/celastrol/thymol) could be useful for developing more safe and effective analogues to restore the activity of meropenem and other β-lactams.
Collapse
|
5
|
Tao B, Wang Q, Cao J, Yasen Y, Ma L, Sun C, Shang J, Feng S. The mechanisms of Chuanxiong Rhizoma in treating spinal cord injury based on network pharmacology and experimental verification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1145. [PMID: 34430586 PMCID: PMC8350674 DOI: 10.21037/atm-21-2529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Background Chuanxiong Rhizoma (CR) is a common traditional Chinese medicine (TCM) that has been widely used in the treatment of spinal cord injury (SCI). However, the underlying molecular mechanism of CR is still largely unknown. This study was designed to explore the bioactive components and the mechanism of CR in treating SCI based on a network pharmacology approach and experimental validation. Methods First, the active compounds and related target genes in CR were screened from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the corresponding target genes of SCI were collected by the Therapeutic Target Database (TTD) and GeneCards database. A protein-protein interaction (PPI) network was constructed using the STRING database. Furthermore, GO function and KEGG enrichment analysis of the targets were analyzed using DAVID tools. Subsequently, the AutoDock software for molecular docking was adopted to verify the above network pharmacology analysis results between the active components and key targets. Finally, an SCI rat model animal validation experiment was assessed to verify the reliability of the network pharmacology results. Results There were 7 active ingredients identified in CR and 246 SCI-related targets were collected. Then, 4 core nodes (ALB, AKT1, MAPK1, and EGFR) were discerned via construction of a PPI network of 111 common targets. The KEGG enrichment analysis results indicated that the Ras signaling pathway, estrogen signaling pathway, and vascular endothelial growth factor (VEGF) signaling pathway were enriched in the development of SCI. The results of molecular docking demonstrated that the effects of CR have a strong affinity with the 4 pivotal targets. Experimental validation in a rat model showed that CR could effectively improve the recovery of motor function and mechanical pain threshold after SCI. Conclusions In summary, it revealed the mechanism of CR treatment for SCI involve active ingredients, targets and signaling pathways, providing a scientific basis for future investigations into the mechanism underlying CR treating for SCI.
Collapse
Affiliation(s)
- Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Qi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Jiangang Cao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Yimingjiang Yasen
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Lei Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Jun Shang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| |
Collapse
|