1
|
Jiang W, Jiang L, Zhao X, Liu Y, Sun H, Zhou X, Liu Y, Huang S. Bioinformatics Analysis Reveals HIST1H2BH as a Novel Diagnostic Biomarker for Atrial Fibrillation-Related Cardiogenic Thromboembolic Stroke. Mol Biotechnol 2025; 67:2111-2126. [PMID: 38825608 DOI: 10.1007/s12033-024-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Atrial fibrillation (AF) is a significant precursor to cerebral embolism. Our study sought to unearth new diagnostic biomarkers for atrial fibrillation-related cerebral embolism (AF-CE) by meticulously examining multiple GEO datasets and meta-analysis. The gene expression omnibus (GEO) database provided RNA sequencing data associated with AF and stroke. We began by pinpointing genes with varied expressions in AF-CE patient blood samples. A meta-analysis was subsequently undertaken using several RNA sequencing datasets to verify these genes. LASSO regression discerned key genes for AF-CE, with their diagnostic prowess verified through ROC curve examination. Active signaling pathways within stroke patients were discerned via GO and KEGG enrichment, with PPI interactions detailing gene interplay. Differential gene analysis revealed an upregulation of sixteen genes and a downregulation of four in stroke patient blood samples. Eight genes showcased varied expression in the meta-analysis. LASSO regression zeroed in on five of these, culminating in HIST1H2BH's identification as a characteristic gene. HIST1H2BH's prowess in predicting AF-CE was confirmed through ROC. Integrin signaling, platelet activation, ECM interactions, and the PI3K-Akt pathway were found active in stroke victims. HIST1H2BH's interaction with the notably upregulated ITGA2B was spotlighted by PPI. Additionally, HIST1H2BH exhibited links with NK cells and eosinophils. HIST1H2BH emerges as an insightful diagnostic beacon for AF-CE. Its presence, post AF, potentially modulates pathways, accentuating platelet activation and consequent thrombus generation, leading to cerebral embolism.
Collapse
Affiliation(s)
- Wenbing Jiang
- Department of Cardiology, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, No.75 Jinxiu Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Lelin Jiang
- Second Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiaoli Zhao
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Yiying Liu
- Postgraduate Training Base Allianceof Wenzhou Medical University (Wenzhou Central Hosptial), Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Huanghui Sun
- The Dingli Clinical College of Wenzhou Medical University, Heart Function Examination Room, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xinlang Zhou
- Department of Cardiology, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, No.75 Jinxiu Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Yin Liu
- Department of Cardiology, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, No.75 Jinxiu Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Shu'se Huang
- Department of Cardiology, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, No.75 Jinxiu Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
2
|
Shi K, Li D, Peng BH, Guo Q. The high-risk model associated with SYTL4 predicts poor prognosis and correlates with immune infiltration in AML. Biochem Biophys Rep 2025; 41:101859. [PMID: 39686961 PMCID: PMC11648810 DOI: 10.1016/j.bbrep.2024.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024] Open
Abstract
Acute myeloid leukemia (AML) currently lacks a definitive cure. Studies have highlighted the involvement of SYTL4 expression levels in neoplasms, yet its specific roles in AML remain unexplored in the literature. Utilizing the TCGA and XENA databases, this study investigated SYTL4 expression levels in AML and identified associations between SYTL4 overexpression and clinicopathological features, prognosis, and immune infiltration in AML patients through genomic analysis. ROC analysis demonstrated the diagnostic value of SYTL4 overexpression in AML. Kaplan-Meier survival, Cox regression, and Lasso analyses were employed to explore SYTL4-coexpressed long non-coding RNAs linked to AML patient prognosis, alongside the construction of nomograms and risk models. SYTL4 expression was significantly elevated in AML and correlated with FAB classification, cytogenetic risk, IDH1 R140 mutation, and NPM1 mutation in cancer patients. SYTL4 overexpression signaled a poor prognosis, serving as a risk indicator for assessing adverse outcomes in AML patients. SYTL4 expression levels also correlated with AML immune cell levels and markers. COX regression analysis revealed that LINC01700, CPNE8-AS1, HOXA10-AS, LINC00899, and SYTL4 influenced adverse AML prognosis. Patients in the high-risk group for these factors experienced significantly poor outcomes, which were closely associated with aDC, CD8 T cells, and TH17 cells. In summary, SYTL4 overexpression is linked to poor prognosis and immune infiltration in AML, with the constructed risk model intended as a prognostic evaluation tool for AML patients.
Collapse
Affiliation(s)
- Ke Shi
- Department of Thoracic Surgery, Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Dan Li
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bo-Hui Peng
- Department of Pediatrics, The First People's Hospital of Changde City, Changde, China
| | - Qiang Guo
- Department of Thoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Yun F, Wu N, Yi X, Zhang X, Feng Y, Ni Q, Gai Y, Li E, Yang Z, Zhang Q, Sai B, Kuang Y, Zhu Y. NOD2 reduces the chemoresistance of melanoma by inhibiting the TYMS/PLK1 signaling axis. Cell Death Dis 2024; 15:720. [PMID: 39353904 PMCID: PMC11445241 DOI: 10.1038/s41419-024-07104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an immune sensor crucial for eliciting the innate immune responses. Nevertheless, discrepancies exist regarding the effect of NOD2 on different types of cancer. This study aimed to investigate these function of NOD2 in melanoma and its underlying mechanisms. We have validated the tumor suppressor effect of NOD2 in melanoma. NOD2 inhibited the proliferation of melanoma cells, hindering their migration and invasion while promoting the onset of apoptosis. Our study showed that NOD2 expression is closely related to pyrimidine and folate metabolism. NOD2 inhibits thymidylate synthase (TYMS) expression by promoting K48-type ubiquitination modification of TYMS, thereby decreasing the resistance of melanoma cells to 5-fluorouracil (5-FU) and capecitabine (CAP). TYMS was identified to form a complex with Polo-like Kinase 1 (PLK1) and activate the PLK1 signaling pathway. Furthermore, we revealed that the combination of the PLK1 inhibitor volasertib (BI6727) with 5-FU or CAP had a synergistic effect repressing the proliferation, migration, and autophagy of melanoma cells. Overall, our research highlights the protective role of NOD2 in melanoma and suggests that targeting NOD2 and the TYMS/PLK1 signaling axis is a high-profile therapy that could be a prospect for melanoma treatment.
Collapse
Affiliation(s)
- Fang Yun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Na Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qinxuan Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yanlong Gai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Enjiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Wu CY, Liu Z, Luo WM, Huang H, Jiang N, Du ZP, Wang FM, Han X, Ye GC, Guo Q, Chen JL. Downregulation of DIP2B as a prognostic marker inhibited cancer proliferation and migration and was associated with immune infiltration in lung adenocarcinoma via CCND1 and MMP2. Heliyon 2024; 10:e32025. [PMID: 38952374 PMCID: PMC11215276 DOI: 10.1016/j.heliyon.2024.e32025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Background DIP2B is related to cancer progression. This study investigated the roles and pathways of DIP2B in lung adenocarcinoma (LUAD). Methods DIP2B expression and the relationship between survival time of cancer patients and DIP2B expression were analyzed. The relationship between DIP2B expression and survival time in LUAD patients was evaluated by a meta-analysis. Cox and survival analyses were used to evaluate the prognostic factors and construct a prognostic nomogram. The mechanisms and effects of DIP2B and the relationship between DIP2B expression and the immune microenvironment were investigated using bioinformatics, CCK-8, western blotting, and transwell experiments. Results DIP2B was overexpressed in LUAD tissues. DIP2B overexpression was associated with shorter prognosis and was an unfavorable risk factor for prognosis in LUAD patients. DIP2B co-expressed genes were involved in cell division, DNA repair, cell cycle, and others. Inhibition of DIP2B expression could downregulate the proliferation, migration, and invasion of LUAD A549 and H1299 cells, which was related to the decrease in CCND1 and MMP2 protein expression. BRCA1 overexpression was associated with short prognosis, and the nomogram formed by DIP2B and BRCA1 was associated with a poor prognosis in LUAD patients. DIP2B expression correlated with immune cells (such as CD8 T cells, Tcm, and iDCs) and cell markers. Conclusion DIP2B is a potential biomarker of poor prognosis and the immune microenvironment in LUAD. Inhibition of DIP2B expression downregulated cancer cell proliferation, migration, and invasion, which might be related to the decrease in CCND1 and MMP2 protein expression. DIP2B-related nomograms might be useful tools for predicting the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huan Huang
- Department of Thoracic Surgery, People's Hospital of Dongxihu, Wuhan, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Peng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Ming Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Chao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wang XJ, Chen JP, Qiao XW, Meng WY, Wang YW, Meng YC, Zhao R, Lin W, Liao YD, Xiao H, Mei PY. Diagnostic Value of GDF10 for the Tumorigenesis and Immune Infiltration in Lung Squamous Cell Carcinoma. Curr Med Sci 2024; 44:309-327. [PMID: 38517673 DOI: 10.1007/s11596-023-2806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/09/2023] [Indexed: 03/24/2024]
Abstract
OBJECTIVE Lung squamous cell carcinoma (LUSC) is associated with a low survival rate. Evidence suggests that bone morphogenetic proteins (BMPs) and their receptors (BMPRs) play crucial roles in tumorigenesis and progression. However, a comprehensive analysis of their role in LUSC is lacking. Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC. METHODS The "R/Limma" package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC, using data from TCGA, GTEx, and GEO databases. Concurrently, the "survminer" packages were employed to investigate their prognostic value and correlation with clinical features in LUSC. The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis (WGCNA). LASSO analysis was conducted to construct a prognostic risk model for LUSC. Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC. Furthermore, based on the tumor immune estimation resource database and tumor-immune system interaction database, the role of the core gene in the tumor microenvironment of LUSC was explored. RESULTS GDF10 had a significant correlation only with the pathological T stage of LUSC, and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC. A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes (HRASLS, HIST1H2BH, FLRT3, CHEK2, and ALPL) for LUSC. GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression. CONCLUSION GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Wei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wang-Yang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang-Wei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun-Chong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong-de Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Han Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Pei-Yuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Fan ST, Xu HQ, He Y, Tu MX, Shi K, Zhang YQ, Guo Q, Yang WQ, Qin Y. Overexpression of TMEM150A in glioblastoma multiforme patients correlated with dismal prognoses and compromised immune statuses. PLoS One 2023; 18:e0294144. [PMID: 38055673 PMCID: PMC10699650 DOI: 10.1371/journal.pone.0294144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Transmembrane proteins have exhibited a significant correlation with glioblastoma multiforme (GBM). The current study elucidates the roles of transmembrane protein 150A (TMEM150A) in GBM. Data on patients with GBM were collected from The Cancer Genome Atlas and Xena databases. The objective was to identify the expression levels of TMEM150A in patients with GBM, and evaluate its diagnostic and prognostic values, accomplished using the receiver operating characteristic and survival analyses. On a cellular level, Cell Counting Kit-8, Wound healing, and Transwell experiments were performed to gauge the impact of TMEM150A on cell growth and migration. The study further investigated the correlation between TMEM150A expression and immune status, along with ribonucleic acid (RNA) modifications in GBM. The findings demonstrated TMEM150A overexpression in the cancerous tissues of patients with GBM, with an area under the curve value of 0.95. TMEM150A overexpression was significantly correlated with poor prognostic indicators. TMEM150A overexpression and isocitrate dehydrogenase (IDH) mutation status were predictive of poor survival time among patients with GBM. In vitro experiments indicated that suppressing TMEM150A expression could inhibit GBM cell proliferation, migration, and invasion. Moreover, TMEM150A overexpression was associated with stromal, immune, and estimate scores, immune cells (such as the T helper (Th) 17 cells, Th2 cells, and regulatory T cells), cell markers, and RNA modifications. Therefore, TMEM150A overexpression might serve as a promising biomarker for predicting poor prognosis in patients with GBM. Inhibiting TMEM150A expression holds the potential for improving the survival time of patients with GBM.
Collapse
Affiliation(s)
- Si-Tong Fan
- Department of Infectious Disease, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Hao-Qiang Xu
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yang He
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| | - Ming-Xiang Tu
- Department of Neurology, Yunyang District People’s Hospital, Shiyan City, China
| | - Ke Shi
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Yun-Qiang Zhang
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
| | - Wen-Qiong Yang
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
- Department of Neurology, Shenzhen Lansheng Brain Hospital, Shenzhen City, China
| | - Yong Qin
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
7
|
Gao S, Zhou XQ, Wu Q, Chen XD, Li P, Qin YM. Effects of Holliday Junction-Recognition Protein-Mediated C-Jun N-Terminal Kinase/ Signal Transducer and Activator of Transcription 3 Signaling Pathway on Cell Proliferation, Cell Cycle and Cell Apoptosis in Bladder Urothelial Carcinoma. TOHOKU J EXP MED 2023; 259:209-219. [PMID: 36543245 DOI: 10.1620/tjem.2022.j113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Holliday Junction-Recognition Protein (HJURP) was upregulated in several tumors, which was associated with poor outcome. This study investigated the effects of the HJURP-mediated c-Jun N-terminal kinase (JNK)/ signal transducer and activator of transcription 3 (STAT3) pathway on bladder urothelial carcinoma (BLUC). Online databases were used to analyze HJURP expression in BLUC and the correlation of HJURP to JNK1 [mitogen-activated protein kinase 8 (MAPK8)], JNK2 (MAPK9), STAT3, marker of proliferation Ki-67 (MKI67), proliferating cell nuclear antigen (PCNA), cyclin dependent kinase 2 (CDK2), CDK4 and CDK6. HJURP expression was detected in BLUC cells and human normal primary bladder epithelial cells (BdECs). BLUC cells were treated with HJURP lentivirus activation /shRNA lentivirus particles or JNK inhibitor SP600125. HJURP was upregulated in BLUC tissues and correlated with poor prognosis of patients (all P < 0.05). HJURP in tumor positively correlated with MAPK8 (R = 0.30), MAPK9 (R = 0.30), STAT3 (R = 0.15), MKI67 (R = 0.60), PCNA (R = 0.46), CDK2 (R = 0.39), CDK4 (R = 0.24) and CDK6 (R = 0.21). The JNK inhibitor SP600125 decreased p-JNK/JNK and p-STAT3/STAT3 in BLUC cells, which was reversed by HJURP overexpression (P < 0.05). The HJURP-mediated JNK/STAT3 pathway promoted BLUC cell proliferation and inhibited cell apoptosis (P < 0.05). HJURP reversed the arrested G0/G1 phase of BLUC cells by SP600125. HJURP acted as an oncogene to regulate BLUC cell proliferation, apoptosis and the cell cycle by mediating the JNK/STAT3 pathway. Therefore, HJURP targeting might be an attractive novel therapeutic target for early diagnosis and treatment in BLUC.
Collapse
Affiliation(s)
- Song Gao
- Department of Urology, Lishui People's Hospital
| | | | - Qi Wu
- Department of Urology, Lishui People's Hospital
| | | | - Peng Li
- Department of Urology, Lishui People's Hospital
| | - Ye-Min Qin
- Department of Urology, Lishui People's Hospital
| |
Collapse
|
8
|
Wang K, Shen S, Dong L, Fang Q, Hou X, Shi X. Polo-like kinase (PLK) 5, a new member of the PLK family, serves as a biomarker to indicate anabatic tumor burden and poor prognosis for resectable non-small cell lung cancer. Front Surg 2023; 9:964044. [PMID: 36684318 PMCID: PMC9856523 DOI: 10.3389/fsurg.2022.964044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/09/2022] [Indexed: 01/09/2023] Open
Abstract
Objective A review argues that polo-like kinase 5 (PLK5) may be linked to unfavorable prognosis in non-small cell lung cancer (NSCLC) patients, which contradicts the discoveries from The Human Protein Atlas database (derived from TCGA analysis). This study intended to comprehensively confirm the association of PLK5 with clinical characteristics and prognosis in NSCLC patients. Methods This two-center, retrospective, cohort study enrolled 210 NSCLC patients receiving surgical resection. PLK5 protein and mRNA were detected by immunohistochemistry and RT-qPCR in tumor and nontumor tissues. Moreover, RNA FPKM data for 994 lung cancer patients were obtained from The Human Protein Atlas database. Results PLK5 protein was decreased in tumor tissue compared to nontumor tissue (P < 0.001). Additionally, decreased PLK5 protein was linked with increased pathological grade (P = 0.002), lymph node metastasis presence (P = 0.001), elevated tumor-node-metastasis (TNM) stage (P = 0.003), and abnormal cancer antigen 125 (CA125) (P = 0.002). Meanwhile, low PLK5 protein was correlated with shortened disease-free survival (DFS) (P = 0.007) and overall survival (OS) (P = 0.038); further multivariable Cox regression analysis revealed that low PLK5 protein independently predicted unfavorable DFS (hazard ratio = 0.573, P = 0.022). PLK5 mRNA was reduced in tumor tissue compared with nontumor tissue (P < 0.001); its decline was linked with enhanced pathological grade (P = 0.034), climbed TNM stage (P = 0.032), and abnormal CA125 (P = 0.002). Furthermore, low PLK5 mRNA was correlated with unfavorable DFS (P = 0.046). The Human Protein Atlas database also disclosed the link between low PLK5 mRNA and worse OS (P = 0.046). Conclusion A PLK5 decrement reflects anabatic tumor burden and poor prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Kaichao Wang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, China
| | - Shaohui Shen
- Department of Cardiothoracic Surgery, Longnan Hospital, Daqing, China,Correspondence: Shaohui Shen
| | - Liyuan Dong
- Department of Gynecology, Daqing Oilfield General Hospital, Daqing, China
| | - Qinmo Fang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, China
| | - Xinlei Hou
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, China
| | - Xueliang Shi
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
9
|
Cheng Y, Yao J, Fang Q, Chen B, Zang G. A circadian rhythm-related biomarker for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Aging (Albany NY) 2022; 14:9617-9631. [PMID: 36455876 PMCID: PMC9792196 DOI: 10.18632/aging.204411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Lung adenocarcinoma (LUAD) remains a major reason of cancer-associated mortality globally, and there exists a lack of indicators for survival in LUAD patients. Therefore, it is clinically required to obtain a novel prognostically indicator for guiding clinical management. In this study, we established a circadian rhythm (CR) related signature by a combinative investigation of multiple datasets. The newly-established signature showed an acceptable ability to predict survival and could serve as an independent indicator for prognosis. Moreover, the newly-established signature was critically associated with tumor malignancy, including proliferation, invasion, EMT and metastasis. The newly-established signature was predictive of response to immune checkpoint blockade. Collectively, we established a CR-related gene signature that could forecast survival, tumor malignancy and therapeutic response; our findings could help guiding clinical management.
Collapse
Affiliation(s)
- Yuanjun Cheng
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Jie Yao
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Qianru Fang
- Department of Obstetrics, People’s Hospital of Chizhou, Chizhou, China
| | - Bin Chen
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Guohui Zang
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| |
Collapse
|
10
|
Ding Y, Bian TT, Li QY, He JR, Guo Q, Wu CY, Chen SS. A new risk model for CSTA, FAM83A, and MYCT1 predicts poor prognosis and is related to immune infiltration in lung squamous cell carcinoma. Am J Transl Res 2022; 14:7705-7725. [PMID: 36505278 PMCID: PMC9730102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To create a prognostic model based on differentially expressed genes (DEGs) in early lung squamous cell carcinoma (LUSC) and characterize the relationship between risk scores and tumor immune infiltration. METHODS We identified DEGs in normal and tumor tissues that overlapped between LUSC-related data sets from the Gene Expression Omnibus and the Cancer Genome Atlas and evaluated their roles in the diagnosis and prognosis of LUSC by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) analysis, meta-analysis and nomogram analysis. We then constructed a risk model based on Cox regression analysis and the Akaike information criterion and identified the relationship between LUSC risk scores and immune infiltration. RESULTS Sixty-two overlapping DEGs were involved with keratinocyte differentiation, epidermal cell differentiation, neutrophil migration, granulocyte chemotaxis, granulocyte migration, leukocyte aggregation, and positive regulation of nuclear factor-κB (NF-κB) activity. Overexpression of family with sequence similarity 83 member A (FAM83A) and MYC target 1 (MYCT1), kallikrein related peptidase 8 (KLK8), and downregulation of ADP ribosylation factor like GTPase 14 (ARL14), caspase recruitment domain family member 14 (CARD14), cystatin A (CSTA), dickkopf WNT signaling pathway inhibitor 4 (DKK4), desmoglein 3 (DSG3), and keratin 6B (KRT6B) were associated with a poor prognosis in LUSC and had significant value for LUSC diagnosis. The expression of CSTA, FAM83A, and MYCT1 and high-risk scores were independent risk factors for a poor prognosis in LUSC. A risk nomogram revealed that risk scores could predict the prognosis of LUSC. The risk score was associated with neutrophils, naive B cells, helper follicular T cells, and activated dendritic cells. CONCLUSIONS The expression levels of CSTA, FAM83A, and MYCT1 are related to the diagnosis and prognosis of LUSC and may have potential as therapeutic targets in LUSC. A risk model and nomogram based on CSTA, FAM83A, and MYCT1 can predict the prognosis of LUSC.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| | - Ting-Ting Bian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Qian-Yun Li
- The Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu 310030, Zhejiang, China
| | - Jin-Rong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Shan-Shan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| |
Collapse
|
11
|
Zhao YY, Xiang QM, Chen JL, Zhang L, Zheng WL, Ke D, Shi RS, Yang KW. SLC25A25-AS1 over-expression could be predicted the dismal prognosis and was related to the immune microenvironment in prostate cancer. Front Oncol 2022; 12:990247. [PMID: 36338724 PMCID: PMC9632290 DOI: 10.3389/fonc.2022.990247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/20/2022] [Indexed: 07/23/2023] Open
Abstract
It has been established that long-chain coding RNA (lncRNA) SLC25A25-AS1 is associated with cancer progression. However, the roles and mechanisms of SLC25A25-AS1 in prostate cancer (PC) have not been reported in the literature. The present study explored the relationship between SLC25A25-AS1 expression and PC progression via comprehensive analysis. The pan-cancer expression of SLC25A25-AS1 was identified using data from The Cancer Genome Atlas (TCGA) database and tissue specimens from our hospital. The expression levels of SLC25A25-AS1 in various subgroups based on the clinical features were identified. The prognostic value of SLC25A25-AS1 and SLC25A25-AS1 co-expressed lncRNAs in PC patients was assessed by survival analysis and ROC analysis, and prognosis-related risk models of SLC25A25-AS1 were constructed. The relationship between SLC25A25-AS1 and the PC immune microenvironment was investigated using correlation analysis. SLC25A25-AS1 expression in PC was significantly increased and correlated with the T stage, clinical stage, Gleason score (GS), and dismal prognosis. SLC25A25-AS1 overexpression exhibited good performance in evaluating the prognosis of PC patients. The area under the curves (AUCs) of the 1-, 3-, and 5-year overall survival (OS) for SLC25A25-AS1 was 1, 0.876, and 0.749. Moreover, the AUCs for the 1-, 3-, and 5-year progress free interval (PFI) for SLC25A25-AS1 were 0.731, 0.701, and 0.718. SLC25A25-AS1 overexpression correlated with the infiltration of CD8 T cells, interstitial dendritic cells (IDC), macrophages and other cells. AC020558.2, ZNF32-AS2, AP4B1-AS1, AL355488.1, AC109460.3, SNHG1, C3orf35, LMNTD2-AS1, and AL365330.1 were significantly associated with SLC25A25-AS1 expression, and short OS and PFI in PC patients. The risk models of the SLC25A25-AS1-related lncRNAs were associated with a dismal prognosis in PC. Overall, SLC25A25-AS1 expression was increased in PC and related to the prognosis and PC immune microenvironment. The risk model of SLC25A25-AS1 have huge prospect for application as prognostic tools in PC.
Collapse
Affiliation(s)
- Ying-Ying Zhao
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Radiology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, China
| | - Qian-Ming Xiang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-Li Chen
- Department of Radiology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, China
| | - Li Zhang
- Department of Radiology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, China
| | - Wei-Long Zheng
- Department of Radiology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, China
| | - Di Ke
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rong-Shu Shi
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kong-Wu Yang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Investigation of Transcriptome Patterns in Endometrial Cancers from Obese and Lean Women. Int J Mol Sci 2022; 23:ijms231911471. [PMID: 36232772 PMCID: PMC9569830 DOI: 10.3390/ijms231911471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
Endometrial cancer is the most common gynaecological malignancy in developed countries. One of the largest risk factors for endometrial cancer is obesity. The aim of this study was to determine whether there are differences in the transcriptome of endometrial cancers from obese vs. lean women. Here we investigate the transcriptome of endometrial cancer between obese and lean postmenopausal women using rRNA-depleted RNA-Seq data from endometrial cancer tissues and matched adjacent non-cancerous endometrial tissues. Differential expression analysis identified 12,484 genes (6370 up-regulated and 6114 down-regulated) in endometrial cancer tissues from obese women, and 6219 genes (3196 up-regulated and 3023 down-regulated) in endometrial cancer tissues from lean women (adjusted p-value < 0.1). A gene ontology enrichment analysis revealed that the top 1000 up-regulated genes (by adjusted p-value) were enriched for growth and proliferation pathways while the top 1000 down-regulated genes were enriched for cytoskeleton restructure networks in both obese and lean endometrial cancer tissues. In this study, we also show perturbations in the expression of protein coding genes (HIST1H2BL, HIST1H3F, HIST1H2BH, HIST1H1B, TTK, PTCHD1, ASPN, PRELP, and CDH13) and the lncRNA MBNL1-AS1 in endometrial cancer tissues. Overall, this study has identified gene expression changes that are similar and also unique to endometrial cancers from obese vs. lean women. Furthermore, some of these genes may serve as prognostic biomarkers or, possibly, therapeutic targets for endometrial cancer.
Collapse
|
13
|
Guo Q, Liu XL, Liu HS, Luo XY, Yuan Y, Ji YM, Liu T, Guo JL, Zhang J. The Risk Model Based on the Three Oxidative Stress-Related Genes Evaluates the Prognosis of LAC Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4022896. [PMID: 35783192 PMCID: PMC9246616 DOI: 10.1155/2022/4022896] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022]
Abstract
Background Oxidative stress plays a role in carcinogenesis. This study explores the roles of oxidative stress-related genes (OSRGs) in lung adenocarcinoma (LAC). Besides, we construct a risk score model of OSRGs that evaluates the prognosis of LAC patients. Methods OSRGs were downloaded from the Gene Set Enrichment Analysis (GSEA) website. The expression levels of OSRGs were confirmed in LAC tissues of the TCGA database. GO and KEGG analyses were used to evaluate the roles and mechanisms of oxidative stress-related differentially expressed genes (DEGs). Survival, ROC, Cox analysis, and AIC method were used to screen the prognostic DEGs in LAC patients. Subsequently, we constructed a risk score model of OSRGs and a nomogram. Further, this work investigated the values of the risk score model in LAC progression and the relationship between the risk score model and immune infiltration. Results We discovered 163 oxidative stress-related DEGs in LAC, involving cellular response to oxidative stress and reactive oxygen species. Besides, the areas under the curve of CCNA2, CDC25C, ERO1A, CDK1, PLK1, ITGB4, and GJB2 were 0.970, 0.984, 0.984, 0.945, 0.984, 0.771, and 0.959, respectively. This indicates that these OSRGs have diagnosis values of LAC and are significantly related to the overall survival of LAC patients. ERO1A, CDC25C, and ITGB4 overexpressions were independent risk factors for the poor prognosis of LAC patients and were associated with risk scores in the risk model. High-risk score levels affected the poor prognosis of LAC patients. Notably, a high-risk score may be implicated in LAC progression via cell cycle, DNA replication, mismatch repair, and other mechanisms. Further, ERO1A, CDC25C, and ITGB4 expression levels were related to the immune infiltrating cells of LAC, including mast cells, NK cells, and CD8 T cells. Conclusion In summary, ERO1A, CDC25C, and ITGB4 of OSRGs are associated with poor prognosis of LAC patients. We confirmed that the risk model based on the ERO1A, CDC25C, and ITGB4 is expected to assess the prognosis of LAC patients.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| | - Xiao-Li Liu
- Department of Ultrasound, The People's Hospital of Jianyang City, Jianyang 641400, Sichuan Province, China
| | - Hua-Song Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| | - Ye Yuan
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| | - Yan-Mei Ji
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| | - Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei Province, China
| |
Collapse
|
14
|
Liu HS, Guo Q, Yang H, Zeng M, Xu LQ, Zhang QX, Liu H, Guo JL, Zhang J. SPDL1 Overexpression Is Associated With the 18F-FDG PET/CT Metabolic Parameters, Prognosis, and Progression of Esophageal Cancer. Front Genet 2022; 13:798020. [PMID: 35664322 PMCID: PMC9157543 DOI: 10.3389/fgene.2022.798020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (ESCA) is one of the common malignant tumors. The roles and signaling mechanisms of spindle apparatus coiled-coil protein 1 (SPDL1) in ESCA progression have not been reported previously. Therefore, the expression levels and potential clinical roles of SPDL1 were investigated using data from multiple databases and tissue samples of 53 ESCA patients who underwent 18F-FDG positron emission tomography (PET)/computed tomography (CT) before therapy. The signaling mechanisms of SPDL1 involved in ESCA progression were investigated via bioinformatics analysis. The effects of SPDL1 on the growth and migration of ESCA cells were investigated using CCK-8, Edu, and transwell assays. SPDL1 was upregulated in ESCA tissues. Increased SPDL1 expression was associated with age, grade, drinking history, cancer stage, lymph node metastasis, TP53 mutation, and poor prognosis in patients with ESCA. SPDL1 overexpression was significantly correlated with SUVmax, SUVmean, and TLG of PET/CT. SPDL1 silencing inhibited cell proliferation, migration, and invasion. SPDL1 was significantly enriched in cell cycle, spliceosome, DNA replication, and other processes. The hub genes of a constructed protein–protein interaction network included CDK1, BUB1, CCNB1, BUB1B, CCNA2, CDC20, MAD2L1, AURKB, NDC80, and PLK1, which were related to SPDL1 expression. The findings of this study suggest that SPDL1 may serve as a biomarker of ESCA prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Zhang
- *Correspondence: Jun Zhang, ; Jia-Long Guo,
| |
Collapse
|
15
|
Jiang N, Guo Q, Luo Q. Inhibition of ITGB1-DT expression delays the growth and migration of stomach adenocarcinoma and improves the prognosis of cancer patients using the bioinformatics and cell model analysis. J Gastrointest Oncol 2022; 13:615-629. [PMID: 35557569 PMCID: PMC9086027 DOI: 10.21037/jgo-22-233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The long non-coding RNA, integrin subunit beta 1 (ITGB1) divergent transcript (ITGB1-DT), is known to be involved in cancer progression and associated with the poor prognosis of cancer patients. At present, the role of ITGB1-DT in stomach adenocarcinoma (STAD) has not been reported. METHODS The expression level of ITGB1-DT was detected in normal gastric and STAD tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. A receiver operating characteristic (ROC) analysis was used to evaluate the role of ITGB1-DT in diagnosing STAD. The relationship between ITGB1-DT overexpression and clinicopathological features, prognosis, and immune-infiltrated cells in STAD were explored using correlation, survival, and Cox regression analyses. A cell model of ITGB1-DT interference was constructed to explore the roles of ITGB1-DT on STAD cell proliferation and migration, and the signaling mechanism was investigated using Gene Set Enrichment Analysis (GSEA). RESULTS ITGB1-DT was expressed up-regulated in STAD tissues. ITGB1-DT overexpression was associated with the T stage, therapeutic effect, overall survival, progression-free interval status, and poor prognosis in STAD patients. ITGB1-DT overexpression was valuable in diagnosing STAD and a negative factor affecting the prognosis of STAD patients. Interference with ITGB1-DT expression inhibited STAD cell proliferation, invasion, and migration. GSEA results showed that ITGB1-DT may be involved in STAD progression through the insulin, p53, mechanistic target of rapamycin kinase (MTOR), and other signaling pathways. Overexpression of ITGB1-DT was significantly correlated with the levels of STAD B cells, T cells, T helper cells, CD8 T cells, cytotoxic cells, and other immune cells. CONCLUSIONS ITGB1-DT was overexpressed and associated with poor prognosis in STAD. Interference with ITGB1-DT expression may delay the progression of STAD to improve the prognosis of STAD patients.
Collapse
Affiliation(s)
- Ni Jiang
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
16
|
Guo Q, Xiao XY, Wu CY, Li D, Chen JL, Ding XC, Cheng C, Chen CR, Tong S, Wang SH. Clinical Roles of Risk Model Based on Differentially Expressed Genes in Mesenchymal Stem Cells in Prognosis and Immunity of Non-small Cell Lung Cancer. Front Genet 2022; 13:823075. [PMID: 35281822 PMCID: PMC8912942 DOI: 10.3389/fgene.2022.823075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) plays an important regulatory role in the progression of non-small cell lung cancer (NSCLC). Mesenchymal stem cells (MSCs) in the TME might contribute to the occurrence and development of cancer. This study evaluates the role of differentially expressed genes (DEGs) of MSCs and the development of NSCLC and develops a prognostic risk model to assess the therapeutic responses. The DEGs in MSCs from lung tissues and from normal tissues were analyzed using GEO2R. The functions and mechanisms of the DEGs were analyzed using the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, the Cancer Genome Atlas (TCGA) database was used to determine the expression levels of the DEGs of MSCs in the NSCLC tissues. The prognostic factors of NSCLC related to MSCs were screened by survival analysis, meta-analysis, Cox regression analysis, and a prognostic risk model and nomogram was developed. The signaling mechanisms and immune roles that risk model participate in NSCLC development were determined via Gene Set Enrichment Analysis and CIBERSORT analysis. Compared to the normal tissues, 161 DEGs were identified in the MSCs of the lung tissues. These DEGs were associated with mechanisms, such as DNA replication, nuclear division, and homologous recombination. The overexpression of DDIT4, IL6, ITGA11, MME, MSX2, POSTN, and TRPA1 were associated with dismal prognosis of NSCLC patients. A high-risk score based on the prognostic risk model indicated the dismal prognosis of NSCLC patients. The nomogram showed that the age, clinical stage, and risk score affected the prognosis of NSCLC patients. Further, the high-risk model was associated with signaling mechanisms, such as the ECM-receptor interaction pathways, cytokine-cytokine receptor interaction, and MAPK pathways, involved in the progression of NSCLC and was also related to the components of the immune system, such as macrophages M0, T follicular helper cells, regulatory T cells. Therefore, the risk model and nomogram that was constructed on the basis of MSC-related factors such as POSTN, TRPA1, and DDIT4 could facilitate the discovery of target molecules that participate in the progression of NSCLC, which might also serve as new candidate markers for evaluating the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yue Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Li
- Department of Oncology, Huanggang Central Hospital, Huanggang, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Chao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Cheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chong-Rui Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si-Hua Wang, ; Song Tong,
| | - Si-Hua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si-Hua Wang, ; Song Tong,
| |
Collapse
|
17
|
Zhang K, Han Z, Zhao H, Liu S, Zeng F. An integrated model of FTO and METTL3 expression that predicts prognosis in lung squamous cell carcinoma patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1523. [PMID: 34790729 PMCID: PMC8576700 DOI: 10.21037/atm-21-4470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022]
Abstract
Background Lung squamous cell carcinoma (LUSC) approximately accounts for a third of lung cancers. However, the role of N6-methyladenosine (m6A) in LUSC remains largely unknown according to previous studies. Methods In this study, we investigated the mutations, copy number variants (CNVs), expression of 20 m6A RNA methylation regulators, and clinical data from The Cancer Genome Atlas-LUSC (TCGA-LUSC). These data were used for the training cohort of screening potential biomarkers. The prognostic model of m6A RNA methylation regulators was constructed. A receiver operating characteristic (ROC) analysis was undertaken to determine the area under the curves (AUCs) (for 3- and 5-year survival) for the model. Additionally, the accuracy of the two-gene model was confirmed with external data verifications. Combined two-gene model and clinincal information were performed to construct a nomogram to predict patient’s prognostic risk assessment. Results Fat mass- and obesity-associated protein (FTO) and methyltransferase-like 3 (METTL3) were identified as potential prognostic biomarkers to evaluate benign and malignant tumors and prognosticate. The following prognostic model of m6A RNA methylation regulators was constructed: risk score = 0.162 × FTO − 0.069 × METTL3. Patients in low-risk group [median overall survival (mOS), 43.4 months] had longer survival than those with high-risk (mOS, 67.3 months) with P=0.0023. The smoking grade and risk score could be independent prognostic factors (P=0.00098 and P=0.0014, respectively). Ultimately, a nomogram was developed to assist clinicians to predict clinical outcomes. Conclusions FTO and METTL3 are potential prognostic biomarkers of LUSC. The two-gene model’s use of prognostic risk scores may provide guidance in the selection of therapeutic strategies.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhaojie Han
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongmei Zhao
- Chosen Med Technology (Beijing) Co., Ltd., Beijing, China
| | - Siyao Liu
- Chosen Med Technology (Beijing) Co., Ltd., Beijing, China
| | - Fuchun Zeng
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|