1
|
Cai W, Liu Y, Zhang T, Ji P, Tian C, Liu J, Zheng Z. GDNF facilitates the differentiation of ADSCs to Schwann cells and enhances nerve regeneration through GDNF/MTA1/Hes1 axis. Arch Biochem Biophys 2024; 753:109893. [PMID: 38309681 DOI: 10.1016/j.abb.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.
Collapse
Affiliation(s)
- Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Ting Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Muramatsu N, Ichikawa M, Katagiri T, Taguchi Y, Hatanaka T, Okuda T, Okamoto H. p53 dry gene powder enhances anti-cancer effects of chemotherapy against malignant pleural mesothelioma. Gene Ther 2024; 31:119-127. [PMID: 37833562 DOI: 10.1038/s41434-023-00424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Dry gene powder is a novel non-viral gene-delivery system, which is inhalable with high gene expression. Previously, we showed that the transfection of p16INK4a or TP53 by dry gene powder resulted in growth inhibitions of lung cancer and malignant pleural mesothelioma (MPM) in vitro and in vivo. Here, we report that dry gene powder containing p53- expression-plasmid DNA enhanced the therapeutic effects of cisplatin (CDDP) against MPM even in the presence of endogenous p53. Furthermore, our results indicated that the safe transfection with a higher plasmid DNA (pDNA) concentration suppressed MPM growth independently of chemotherapeutic agents. To develop a new therapeutic alternative for MPM patients without safety concerns over "vector doses", our in vitro data provide basic understandings for dry gene powder.
Collapse
Affiliation(s)
- Naomi Muramatsu
- Randis Medical Developments Inc., Nagoya, Aichi, Japan
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | | | | | | | | | - Tomoyuki Okuda
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Hirokazu Okamoto
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Alqahtani T, Kumarasamy V, Alghamdi SS, Suliman RS, Bin Saleh K, Alrashed MA, Aldhaeefi M, Sun D. Adefovir Dipivoxil as a Therapeutic Candidate for Medullary Thyroid Carcinoma: Targeting RET and STAT3 Proto-Oncogenes. Cancers (Basel) 2023; 15:cancers15072163. [PMID: 37046823 PMCID: PMC10093259 DOI: 10.3390/cancers15072163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Aberrant gene expression is often linked to the progression of various cancers, making the targeting of oncogene transcriptional activation a potential strategy to control tumor growth and development. The RET proto-oncogene’s gain-of-function mutation is a major cause of medullary thyroid carcinoma (MTC), which is part of multiple endocrine neoplasia type 2 (MEN2) syndrome. In this study, we used a cell-based bioluminescence reporter system driven by the RET promoter to screen for small molecules that potentially suppress the RET gene transcription. We identified adefovir dipivoxil as a transcriptional inhibitor of the RET gene, which suppressed endogenous RET protein expression in MTC TT cells. Adefovir dipivoxil also interfered with STAT3 phosphorylation and showed high affinity to bind to STAT3. Additionally, it inhibited RET-dependent TT cell proliferation and increased apoptosis. These results demonstrate the potential of cell-based screening assays in identifying transcriptional inhibitors for other oncogenes.
Collapse
Affiliation(s)
- Tariq Alqahtani
- Department of Pharmaceutical Sciences, College of Pharmacy, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Vishnu Kumarasamy
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Sahar Saleh Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Rasha Saad Suliman
- Department of Pharmaceutical Sciences, College of Pharmacy, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- Pharmacy Department, Fatima College of Health Sciences, Almafrag, Abu Dhabi P.O. Box 3798, United Arab Emirates
| | - Khalid Bin Saleh
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- Department of pharmacy practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mohammed A. Alrashed
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- Department of pharmacy practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mohammed Aldhaeefi
- Department of Pharmaceutical Sciences, College of Pharmacy, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- Department of pharmacy practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Daekyu Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
- Pharmacy Department, Fatima College of Health Sciences, Almafrag, Abu Dhabi P.O. Box 3798, United Arab Emirates
- Department of Clinical and Administrative Pharmacy Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
- The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Department of Cancer Biology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Vattem C, Pakala SB. Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. J Biosci 2022. [DOI: 10.1007/s12038-022-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Ma J, Li C, Qian H, Zhang Y. MTA1: A Vital Modulator in Prostate Cancer. Curr Protein Pept Sci 2022; 23:456-464. [PMID: 35792131 DOI: 10.2174/1389203723666220705152713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the most frequent cancer of the male genitourinary system and the second most common cancer in men worldwide. PCa has become one of the leading diseases endangering men's health in Asia in recent years, with a large increase in morbidity and mortality. MTA1 (metastasis-associated antigen-1), a transcriptional coregulator involved in histone deacetylation and nucleosome remodeling, is a member of the MTA family. MTA1 is involved in cell signaling, chromosomal remodeling, and transcriptional activities, all of which are important for epithelial cell progression, invasion, and growth. MTA1 has been demonstrated to play a significant role in the formation, progression, and metastasis of PCa, and MTA1 expression is specifically linked to PCa bone metastases. Therefore, MTA1 may be a potential target for PCa prevention and treatment. Here, we reviewed the structure, function, and expression of MTA1 in PCa as well as drugs that target MTA1 to highlight a potential new treatment for PCa.
Collapse
Affiliation(s)
- Jialu Ma
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Urology Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Li YT, Wu HL, Liu CJ. Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int J Mol Sci 2021; 22:9380. [PMID: 34502289 PMCID: PMC8431721 DOI: 10.3390/ijms22179380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an important cause of cancer death worldwide, and hepatitis B virus (HBV) infection is a major etiology, particularly in the Asia-Pacific region. Lack of sensitive biomarkers for early diagnosis of HCC and lack of effective therapeutics for patients with advanced HCC are the main reasons for high HCC mortality; these clinical needs are linked to the molecular heterogeneity of hepatocarcinogenesis. Animal models are the basis of preclinical and translational research in HBV-related HCC (HBV-HCC). Recent advances in methodology have allowed the development of several animal models to address various aspects of chronic liver disease, including HCC, which HBV causes in humans. Currently, multiple HBV-HCC animal models, including conventional, hydrodynamics-transfection-based, viral vector-mediated transgenic, and xenograft mice models, as well as the hepadnavirus-infected tree shrew and woodchuck models, are available. This review provides an overview of molecular mechanisms and animal models of HBV-HCC. Additionally, the metastatic tumor antigen 1 (MTA1), a cancer-promoting molecule, was introduced as an example to address the importance of a suitable animal model for studying HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|