1
|
Ng CSH. Preface on Lung Cancer Management-The Next Decade. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:41. [PMID: 38911556 PMCID: PMC11193569 DOI: 10.21037/atm-2024-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Calvin S H Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Bitter T, Seeba T, Schroeder-Richter J, Fröhlich M, Duaer W, Abidi W, Kindermann MP. [4D electromagnetic navigation bronchoscopy for the diagnosis of peripheral pulmonary nodules - An overview and preliminary clinical results]. Pneumologie 2024; 78:93-99. [PMID: 38081219 DOI: 10.1055/a-2193-0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND The diagnostic of peripheral pulmonary nodules (PPN) is a particular challenge in interventional bronchology, which is why navigation systems such as electromagnetic navigation (ENB) are increasingly being used. The 4D-ENB represents the most current development of the ENB. It utilizes inspiratory and expiratory CT scans for mapping and thus helps compensate for respiratory movements-induced CT-to-body divergence. The aim of this work was to present the first clinical data and experiences using the 4D-ENB method for diagnosis of PPNs. METHODS We retrospectively describe the results of the first nine consecutive patient cases diagnosed at Klinikum Braunschweig using 4D-ENB in a unimodal diagnostic procedure. RESULTS Of the first 9 PPNs examined by 4D-ENB, navigation and puncture of the lesion was successful in 8 patients (89%). Diagnostic biopsy was could be carried out in six out of nine patients (67%). There were no significant procedure-related complications. CONCLUSION Our preliminary data suggest that 4D-ENB is a promising new alternative for the diagnosis of PPNs. To further improve diagnostic yield, 4D-END, which lacks real-time visualization, should be embedded in a multimodal diagnostic procedure with rEBUS and/or fluoroscopy.
Collapse
Affiliation(s)
- Thomas Bitter
- Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland
| | - Tielko Seeba
- Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland
| | - Jörn Schroeder-Richter
- Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland
| | - Michael Fröhlich
- Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland
| | - Wissam Duaer
- Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland
| | - Wael Abidi
- Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland
| | - Markus Peter Kindermann
- Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland
| |
Collapse
|
3
|
Khan A, Bashour S, Sabath B, Lin J, Sarkiss M, Song J, Sagar AES, Shah A, Casal RF. Severity of Atelectasis during Bronchoscopy: Descriptions of a New Grading System ( Atelectasi sSeverity Scoring System-"ASSESS") and At-Risk-Lung Zones. Diagnostics (Basel) 2024; 14:197. [PMID: 38248073 PMCID: PMC10814045 DOI: 10.3390/diagnostics14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Atelectasis during bronchoscopy under general anesthesia is very common and can have a detrimental effect on navigational and diagnostic outcomes. While the intraprocedural incidence and anatomic location have been previously described, the severity of atelectasis has not. We reviewed chest CT images of patients who developed atelectasis in the VESPA trial (Ventilatory Strategy to Prevent Atelectasis). By drawing boundaries at the posterior chest wall (A), the anterior aspect of the vertebral body (C), and mid-way between these two lines (B), we delineated at-risk lung zones 1, 2, and 3 (from posterior to anterior). An Atelectasis Severity Score System ("ASSESS") was created, classifying atelectasis as "mild" (zone 1), "moderate" (zones 1-2), and "severe" (zones 1-2-3). A total of 43 patients who developed atelectasis were included in this study. A total of 32 patients were in the control arm, and 11 were in the VESPA arm; 20 patients (47%) had mild atelectasis, 20 (47%) had moderate atelectasis, and 3 (6%) had severe atelectasis. A higher BMI was associated with increased odds (1.5 per 1 unit change; 95% CI, 1.10-2.04) (p = 0.0098), and VESPA was associated with decreased odds (0.05; 95% CI, 0.01-0.47) (p = 0.0080) of developing moderate to severe atelectasis. ASSESS is a simple method used to categorize intra-bronchoscopy atelectasis, which allows for a qualitative description of this phenomenon to be developed. In the VESPA trial, a higher BMI was not only associated with increased incidence but also increased severity of atelectasis, while VESPA had the opposite effect. Preventive strategies should be strongly considered in patients with risk factors for atelectasis who have lesions located in zones 1 and 2, but not in zone 3.
Collapse
Affiliation(s)
- Asad Khan
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (B.S.); (J.L.)
| | - Sami Bashour
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (B.S.); (J.L.)
| | - Bruce Sabath
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (B.S.); (J.L.)
| | - Julie Lin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (B.S.); (J.L.)
| | - Mona Sarkiss
- Department of Anesthesia and Peri-Operative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ala-Eddin S. Sagar
- Department of Internal Medicine, King Faisal Specialist Hospital and Research Center, Madinah 42523, Saudi Arabia;
| | - Archan Shah
- Department of Onco-Medicine, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA;
| | - Roberto F. Casal
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (B.S.); (J.L.)
| |
Collapse
|
4
|
Abouzgheib W, Ambrogi C, Chai M. Unlocking the potential of robotic-assisted bronchoscopy: overcoming challenging anatomy and locations. Ther Adv Respir Dis 2024; 18:17534666241259369. [PMID: 38877690 PMCID: PMC11179493 DOI: 10.1177/17534666241259369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024] Open
Abstract
Robotic-assisted bronchoscopy (RAB) was recently added to the armamentarium of tools used in sampling peripheral lung nodules. Protocols and guidelines have since been published advocating use of large oral artificial airways, use of confirmatory technologies such as radial endobronchial ultrasound (R-EBUS), and preferably limiting sampling to pulmonary parenchymal lesions. We present three clinical cases where RAB was used unconventionally to sample pulmonary nodules in unusual locations and in patients with challenging airway anatomy. In case 1, we introduced the ion catheter through a nasal airway in a patient with trismus. In case 2, we established a diagnosis by sampling a station 5 lymph node, and in case 3, we sampled a lesion located behind an airway stump from previous thoracic surgery. All three patients would have presented significant challenges for alternative biopsy modalities such as CT-guided needle biopsy or video-assisted thoracic surgery.
Collapse
Affiliation(s)
- Wissam Abouzgheib
- Cooper Medical School of Rowan University, 3 Cooper plaza, suite 312, Camden, NJ 08103, USA
| | | | - Michele Chai
- Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
5
|
Ortiz-Jaimes G, Reisenauer J. Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities. Pragmat Obs Res 2023; 14:75-94. [PMID: 37694262 PMCID: PMC10492559 DOI: 10.2147/por.s395806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
The approach to peripheral pulmonary lesions (PPL) has been evolving continuously. Advanced bronchoscopic navigational techniques have improved the airway-based approaches to these lesions. Robotic Assisted Bronchoscopy (RAB) can be considered the current pinnacle of this evolution; allowing for a safer approach to sampling lesions previously considered outside of bronchoscopic reach. We present a comprehensive review of the changing epidemiology of lung cancer and the importance of early tissue sampling, the evolution of sampling and navigational bronchoscopic techniques, technical considerations and evidence pertaining to the use of RAB, and adjunct techniques in the diagnosis of lung cancer. Complications and future applications of RAB are also discussed.
Collapse
Affiliation(s)
- Gabriel Ortiz-Jaimes
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janani Reisenauer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Thoracic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Kuan CP, Huang S, Wu HY, Wang AP, Wu CY. Path Planning and Navigation of Miniature Serpentine Robot for Bronchoscopy Application. MICROMACHINES 2023; 14:969. [PMID: 37241594 PMCID: PMC10223278 DOI: 10.3390/mi14050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
The miniature serpentine robot can be applied to NOTES (Natural Orifice Transluminal Endoscopic Surgery). In this paper, a bronchoscopy application is addressed. This paper describes the basic mechanical design and control scheme of this miniature serpentine robotic bronchoscopy. In addition, off-line backward path planning and real-time and in situ forward navigation in this miniature serpentine robot are discussed. The proposed backward-path-planning algorithm utilizes the 3D model of a bronchial tree constructed from the synthetization of medical images such as images from CT (Computed Tomography), MRI (Magnetic Resonance Imaging), or X-ray, to define a series of nodes/events backward from the destination, for example, the lesion, to the original starting point, for example, the oral cavity. Accordingly, forward navigation is designed to make sure this series of nodes/events shall be passed/occur from the origin to the destination. This combination of backward-path planning and forward navigation does not require accurate positioning information of the tip of the miniature serpentine robot, which is where the CMOS bronchoscope is located. Collaboratively, a virtual force is introduced to maintain the tip of the miniature serpentine robot at the center of the bronchi. Results show that this method of path planning and navigation of the miniature serpentine robot for bronchoscopy applications works.
Collapse
Affiliation(s)
- Cheng-Peng Kuan
- Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan; (S.H.); (A.-P.W.)
| | | | | | | | | |
Collapse
|