1
|
Pande AR, Chaubey S, Kumar D, Chandra KP, Geetha T, Sharma A. Our Experiences and Learnings in Diagnosing MODY from Non-Institutional-Based Diabetes Care Clinics. Indian J Endocrinol Metab 2024; 28:480-487. [PMID: 39676784 PMCID: PMC11642506 DOI: 10.4103/ijem.ijem_361_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Maturity-onset diabetes of the young (MODY) is a rare group of disorders characterised by impaired functions or development of pancreatic islets and monogenic diabetes at a young age. Diagnosing MODY can be rewarding for both clinicians and patients as it can change the management from generic to targeted therapy. Methods This study reports the retrospective analysis of data collected from four clinics between March 2016 and February 2023 from Lucknow, a city in northern India. Fifty-three individuals are suspected to be affected by MODY based on ISPAD guidelines. Following a detailed clinical evaluation, they were referred for genetic diagnostic testing. Results The cohort consists of 19 females and 34 males with a mean age of diagnosis of 25.3 years and a body mass index of 22.3 Kg/m2. Genetic testing detected variants in 13/53 (~24.5%) individuals. Five cases had significant pathogenic/likely pathogenic variants, HNF1A gene in two [(p.Phe268LeufsTer74) (p.Arg200Gln)], one each in HNF4A (Arg311His), PDX1(p.Ala228GlyfsTer33), and a case with suggestive digenic variants in HNF1A gene (p.Arg200Gln) and HNF1B [(p.Leu13Met)]. Variants of uncertain significance (VUSs) with inconclusive evidence of pathogenicity were reported in eight patients, and five were considered to be clinically significant as they are lean young onset, sulfonylurea-responsive, and presented with diabetes without acanthosis nigricans and with high pretest probability. These individuals harboured variants in HNF1A (p.Thr425_Thr429delinsPro), HNF1B (p.Ser19Phe), CEL (p.Val681ArgfsTer6), ABCC8 (p.Ile872Met), and KCNJ11 (p.Arg221Cys) genes. Conclusion We found a diagnostic yield of around 10% of pathogenic or likely pathogenic variants in individuals who were suspected to have MODY. As it is a field that is still evolving, we might consider starting with oral agents under close supervision in those individuals who have VUS; there are some proportions of individuals who might not have classical sulfonylurea-responsive genetic variants, but they might respond to it.
Collapse
Affiliation(s)
- Arunkumar R. Pande
- Department of Endocrinology, Lucknow Endocrine Diabetes and Thyroid Clinic, Uttar Pradesh, India
| | - Santosh Chaubey
- Department of Endocrinology, Cairns and Hinterland Hospital and Health Service, 165 The Esplanade Cairns North QLD, Queensland, Australia
| | - Dinesh Kumar
- Department of Internal Medicine, Harsh Clinic and Diabetes Care Centre, Singar Nagar Alambagh, Lucknow, Uttar Pradesh, India
| | - Kumar P. Chandra
- Department of Diabetology, Chandra Diabetes Clinic, Vijayant Khand, Gomti Nagar, Lucknow, Uttar Pradesh, India
| | - Thenral Geetha
- Department of Genetics, MedGenome Labs, Tamil Nadu, India
| | - Akshita Sharma
- Department of Genetics, MedGenome Labs, Tamil Nadu, India
| |
Collapse
|
2
|
Marassi M, Morieri ML, Sanga V, Ceolotto G, Avogaro A, Fadini GP. The Elusive Nature of ABCC8-related Maturity-Onset Diabetes of the Young (ABCC8-MODY). A Review of the Literature and Case Discussion. Curr Diab Rep 2024; 24:197-206. [PMID: 38980630 PMCID: PMC11303576 DOI: 10.1007/s11892-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Maturity-onset diabetes of the young (MODY) are monogenic forms of diabetes resulting from genetic defects, usually transmitted in an autosomal dominant fashion, leading to β-cell dysfunction. Due to the lack of homogeneous clinical features and univocal diagnostic criteria, MODY is often misdiagnosed as type 1 or type 2 diabetes, hence its diagnosis relies mostly on genetic testing. Fourteen subtypes of MODY have been described to date. Here, we review ABCC8-MODY pathophysiology, genetic and clinical features, and current therapeutic options. RECENT FINDINGS ABCC8-MODY is caused by mutations in the adenosine triphosphate (ATP)-binding cassette transporter subfamily C member 8 (ABCC8) gene, involved in the regulation of insulin secretion. The complexity of ABCC8-MODY genetic picture is mirrored by a variety of clinical manifestations, encompassing a wide spectrum of disease severity. Such inconsistency of genotype-phenotype correlation has not been fully understood. A correct diagnosis is crucial for the choice of adequate treatment and outcome improvement. By targeting the defective gene product, sulfonylureas are the preferred medications in ABCC8-MODY, although efficacy vary substantially. We illustrate three case reports in whom a diagnosis of ABCC8-MODY was suspected after the identification of novel ABCC8 variants that turned out to be of unknown significance. We discuss that careful interpretation of genetic testing is needed even on the background of a suggestive clinical context. We highlight the need for further research to unravel ABCC8-MODY disease mechanisms, as well as to clarify the pathogenicity of identified ABCC8 variants and their influence on clinical presentation and response to therapy.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Mario Luca Morieri
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Giulio Ceolotto
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy.
- Veneto Institute of Molecular Medicine, Padua, 35100, Italy.
| |
Collapse
|
3
|
Grier AE, McGill JB, Lord SM, Speake C, Greenbaum C, Chamberlain CE, German MS, Anderson MS, Hirsch IB. ABCC8-Related Monogenic Diabetes Presenting Like Type 1 Diabetes in an Adolescent. AACE Clin Case Rep 2023; 9:101-103. [PMID: 37520758 PMCID: PMC10382606 DOI: 10.1016/j.aace.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 08/01/2023] Open
Abstract
Background Identifying cases of diabetes caused by single gene mutations between the more common type 1 diabetes (T1D) and type 2 diabetes (T2D) is a difficult but important task. We report the diagnosis of ATP-binding cassette transporter sub-family C member 8 (ABCC8)-related monogenic diabetes in a 35-year-old woman with a protective human leukocyte antigen (HLA) allele who was originally diagnosed with T1D at 18 years of age. Case Report Patient A presented with polyuria, polydipsia, and hypertension at the age of 18 years and was found to have a blood glucose > 500 mg/dL (70-199 mg/dL) and an HbA1C (hemoglobin A1C) >14% (4%-5.6%). She had an unmeasurable C-peptide but no urine ketones. She was diagnosed with T1D and started on insulin therapy. Antibody testing was negative. She required low doses of insulin and later had persistence of low but detectable C-peptide. At the age of 35 years, she was found to have a protective HLA allele, and genetic testing revealed a pathogenic mutation in the ABCC8 gene. The patient was then successfully transitioned to sulfonylurea therapy. Discussion Monogenic diabetes diagnosed in adolescence typically presents with mild to moderate hyperglycemia, positive family history and, in some cases, other organ findings or dysfunction. The patient in this report presented with very high blood glucose, prompting the diagnosis of T1D. When she was found to have a protective HLA allele, further investigation revealed the mutation in the sulfonylurea receptor gene, ABCC8. Conclusion Patients suspected of having T1D but with atypical clinical characteristics such as negative autoantibodies, low insulin requirements, and persistence of C-peptide should undergo genetic testing for monogenic diabetes.
Collapse
Affiliation(s)
- Alexandra E. Grier
- Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Janet B. McGill
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra M. Lord
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Cate Speake
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Carla Greenbaum
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Chester E. Chamberlain
- Department of Medicine, Diabetes Center, University of California, San Francisco, California
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California
| | - Michael S. German
- Department of Medicine, Diabetes Center, University of California, San Francisco, California
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California
| | - Mark S. Anderson
- Department of Medicine, Diabetes Center, University of California, San Francisco, California
| | - Irl B. Hirsch
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
4
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
5
|
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J Pers Med 2022; 12:1762. [PMID: 36573710 PMCID: PMC9697644 DOI: 10.3390/jpm12111762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.
Collapse
Affiliation(s)
- Hazar Younis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Arushi Verma
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, Reno, NV 89557, USA
| |
Collapse
|