1
|
Chen J, Li M, Shang S, Cheng L, Tang Z, Huang C. LncRNA XIST/miR-381-3P/STAT1 axis as a potential biomarker for lupus nephritis. Lupus 2024; 33:1176-1191. [PMID: 39126180 DOI: 10.1177/09612033241273072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
OBJECTIVE We aim to investigate the potential roles of key genes in the development of lupus nephritis (LN), screen key biomarkers, and construct the lncRNA XIST/miR-381-3P/STAT1 axis by using bioinformatic prediction combined with clinical validation, thereby providing new targets and insights for clinical research. METHODS Gene expression microarrays GSE157293 and GSE112943 were downloaded from the GEO database to obtain differentially expressed genes (DEGs), followed by enrichment analyses on these DEGs, which were enriched and analyzed to construct a protein-protein interaction (PPI) network to screen core genes. The lncRNA-miRNA-mRNA regulatory network was predicted and constructed based on the miRNA database. 37 female patients with systemic lupus erythematosus (SLE) were recruited to validate the bioinformatics results by exploring the diagnostic value of the target ceRNA axis in LN by dual luciferase and real-time fluorescence quantitative PCR (RT-qPCR) and receiver operating characteristic (ROC). RESULTS The data represented that a total of 133 differential genes were screened in the GSE157293 dataset and 2869 differential genes in the GSE112943 dataset, yielding a total of 26 differentially co-expressed genes. Six core genes (STAT1, OAS2, OAS3, IFI44, DDX60, and IFI44L) were screened. Biological functional analysis identified key relevant pathways in LN. ROC curve analysis suggested that lncRNA XIST, miR-381-3P, and STAT1 could be used as potential molecular markers to assist in the diagnosis of LN. CONCLUSION STAT1 is a key gene in the development of LN. In conclusion, lncRNA XIST, miR-381-3P, and STAT1 can be used as new molecular markers to assist in the diagnosis of LN, and the lncRNA XIST/miR-381-3P/STAT1 axis may be a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Junjie Chen
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ming Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shuangshuang Shang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lili Cheng
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhongfu Tang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Chuanbing Huang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Muntyanu A, Le M, Ridha Z, O’Brien E, Litvinov IV, Lefrançois P, Netchiporouk E. Novel role of long non-coding RNAs in autoimmune cutaneous disease. J Cell Commun Signal 2022; 16:487-504. [PMID: 34346026 PMCID: PMC9733767 DOI: 10.1007/s12079-021-00639-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic autoimmune rheumatic diseases (SARDs) are a heterogeneous group of chronic multisystem inflammatory disorders that are thought to have a complex pathophysiology, which is not yet fully understood. Recently, the role of non-coding RNAs, including long non-coding RNA (lncRNA), has been of particular interest in the pathogenesis of SARDs. We aimed to summarize the potential roles of lncRNA in SARDs affecting the skin including, systemic sclerosis (SSc), dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). We conducted a narrative review summarizing original articles published until July 19, 2021, regarding lncRNA associated with SSc, DM, and CLE. Several lncRNAs were hypothesized to play an important role in disease pathogenesis of SSc, DM and CLE. In SSc, Negative Regulator of IFN Response (NRIR) was thought to modulate Interferon (IFN) response in monocytes, anti-sense gene to X-inactivation specific transcript (TSIX) to regulate increased collagen stability, HOX transcript antisense RNA (HOTAIR) to increase numbers of myofibroblasts, OTUD6B-Anti-Sense RNA 1 to decrease fibroblast apoptosis, ncRNA00201 to regulate pathways in SSc pathogenesis and carcinogenesis, H19X potentiating TGF-β-driven extracellular matrix production, and finally PSMB8-AS1 potentiates IFN response. In DM, linc-DGCR6-1 expression was hypothesized to target the USP18 protein, a type 1 IFN-inducible protein that is considered a key regulator of IFN signaling. Additionally, AL136018.1 is suggested to regulate the expression Cathepsin G, which increases the permeability of vascular endothelial cells and the chemotaxis of inflammatory cells in peripheral blood and muscle tissue in DM. Lastly, lnc-MIPOL1-6 and lnc-DDX47-3 in discoid CLE were thought to be associated with the expression of chemokines, which are significant in Th1 mediated disease. In this review, we summarize the key lncRNAs that may drive pathogenesis of these connective tissue diseases and could potentially serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Anastasiya Muntyanu
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Michelle Le
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Zainab Ridha
- Faculty of Medicine, Université de Laval, Québec, QC Canada
| | - Elizabeth O’Brien
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Ivan V. Litvinov
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Philippe Lefrançois
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Elena Netchiporouk
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| |
Collapse
|
3
|
Liu R, Zhang L, Zhao X, Liu J, Chang W, Zhou L, Zhang K. circRNA: Regulatory factors and potential therapeutic targets in inflammatory dermatoses. J Cell Mol Med 2022; 26:4389-4400. [PMID: 35770323 PMCID: PMC9357617 DOI: 10.1111/jcmm.17473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
The skin is the largest organ of the human body and acts as the first line of defence against injury and infection. Skin diseases are among the most common health problems and are associated with a considerable burden that encompasses financial, physical and mental consequences for patients. Exploring the pathogenesis of skin diseases can provide insights into new treatment strategies. Inflammatory dermatoses account for a large proportion of dermatoses and have a great impact on the patients' body and quality of life. Therefore, it is important to study their pathogenesis and explore effective treatment. Circular RNAs (circRNAs) are a special type of RNA molecules that play important regulatory roles in several diseases and are involved in skin pathophysiological processes. This review summarizes the biogenesis, properties and functions of circRNAs as well as their roles in the pathogenesis of inflammatory dermatoses, including psoriasis, lupus erythematosus, atopic dermatitis, lichen planus and severe acne and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ruifeng Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Luyao Zhang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Chen HW, Barber G, Chong BF. The Genetic Landscape of Cutaneous Lupus Erythematosus. Front Med (Lausanne) 2022; 9:916011. [PMID: 35721085 PMCID: PMC9201079 DOI: 10.3389/fmed.2022.916011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune connective tissue disease that can exist as a disease entity or within the context of systemic lupus erythematosus (SLE). Over the years, efforts to elucidate the genetic underpinnings of CLE and SLE have yielded a wealth of information. This review examines prior studies investigating the genetics of CLE at the DNA and RNA level and identifies future research areas. In this literature review, we examined the English language literature captured within the MEDLINE and Embase databases using pre-defined search terms. First, we surveyed studies investigating various DNA studies of CLE. We identified three predominant areas of focus in HLA profiling, complement deficiencies, and genetic polymorphisms. An increased frequency of HLA-B8 has been strongly linked to CLE. In addition, multiple genes responsible for mediating innate immune response, cell growth, apoptosis, and interferon response confer a higher risk of developing CLE, specifically TREX1 and SAMHD1. There was a strong association between C2 complement deficiency and CLE. Second, we reviewed literature studying aberrations in the transcriptomes of patients with CLE. We reviewed genetic aberrations initiated by environmental insults, and we examined the interplay of dysregulated inflammatory, apoptotic, and fibrotic pathways in the context of the pathomechanism of CLE. These current learnings will serve as the foundation for further advances in integrating personalized medicine into the care of patients with CLE.
Collapse
|
5
|
Yuan B, Wang W, Zhao H, Wang L. Role of lncRNA TUG1 in Adenomyosis and its Regulatory Mechanism in Endometrial Epithelial Cell Functions. Endocrinology 2022; 163:6550238. [PMID: 35298636 DOI: 10.1210/endocr/bqac033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Adenomyosis (AM) is a common gynecological disorder that can cause pelvic pain. The regulatory role of long noncoding RNAs (lncRNAs) in AM progression has been widely reported. This study investigated the effect and mechanism of lncRNA taurine-upregulated gene 1 (TUG1) on endometrial epithelial cells (EECs) in AM. METHODS Endometrial tissues of AM patients and controls were collected. A murine model of AM was established by tamoxifen induction. TUG1 expression in endometrial tissues of AM patients and mice was determined. In vivo, the effect of TUG1 on AM mice was measured through H&E staining, Masson's staining, uterine weight, and estradiol concentration. EECs isolated from AM patients were transfected with sh-TUG1. In vitro, the effect of TUG1 on the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and angiogenesis of EECs was evaluated by CCK8, colony formation, immunofluorescence, wound healing, and Transwell assays. The binding relationship among TUG1, E2F4, and KLF5 was confirmed using RNA immunoprecipitation and RNA pull-down assays. A function rescue experiment was designed to verify the effect of KLF5 on EECs. RESULTS TUG1 expression was elevated in AM mice and patients. Downregulation of TUG1 promoted the recovery of AM mice. Downregulation of TUG1 suppressed proliferation, migration, invasion, EMT, and angiogenesis of EECs. Mechanically, TUG1 suppressed KLF5 transcription by binding to E2F4. Downregulation of KLF5 reversed the inhibitory effect of TUG1 silencing on the functions of EECs. CONCLUSION TUG1 expression was elevated in AM, and TUG1 facilitated proliferation, migration, invasion, EMT, and angiogenesis of EECs via E2F4/KLF5, thereby aggravating AM.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Wuliang Wang
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Hu Zhao
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Lijun Wang
- Department of Gynaecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| |
Collapse
|
6
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Skin injury is the most common clinical manifestation of SLE and is disfiguring, difficult to treat, and incompletely understood. We provide an overview of recently published articles covering the immunopathogenesis of skin injury in SLE. RECENT FINDINGS Skin of SLE has an inherent susceptibility to apoptosis, the cause of which may be multifactorial. Chronic IFN overexpression leads to barrier disruption, infiltration of inflammatory cells, cytokine production, and release of autoantigens and autoantibody production that result in skin injury. Ultraviolet light is the most important CLE trigger and amplifies this process leading to skin inflammation and potentially systemic disease flares. SUMMARY The pathogenesis of skin injury in CLE is complex but recent studies highlight the importance of mechanisms driving dysregulated epidermal cell death likely influenced by genetic risk factors, environmental triggers (UV light), and cytotoxic cells and cellular signaling.
Collapse
Affiliation(s)
- Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Liu H, Zou Y, Chen C, Tang Y, Guo J. Current Understanding of Circular RNAs in Systemic Lupus Erythematosus. Front Immunol 2021; 12:628872. [PMID: 33717154 PMCID: PMC7946848 DOI: 10.3389/fimmu.2021.628872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a common and potentially fatal autoimmune disease that affects multiple organs. To date, its etiology and pathogenesis remains elusive. Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs with covalently closed loop structure. Growing evidence has demonstrated that circRNAs may play an essential role in regulation of gene expression and transcription by acting as microRNA (miRNA) sponges, impacting cell survival and proliferation by interacting with RNA binding proteins (RBPs), and strengthening mRNA stability by forming RNA-protein complexes duplex structures. The expression patterns of circRNAs exhibit tissue-specific and pathogenesis-related manner. CircRNAs have implicated in the development of multiple autoimmune diseases, including SLE. In this review, we summarize the characteristics, biogenesis, and potential functions of circRNAs, its impact on immune responses and highlight current understanding of circRNAs in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Rheumatology and Immunology, The People’s Hospital of China Three Gorges University/The First People’s Hospital of Yichang, Yichang, China
| | - Yundong Zou
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chen Chen
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yundi Tang
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| |
Collapse
|