1
|
Shah AH, Surendran A, Hassan-Tash P, Turnbull CN, Johnston N, Goodlett D, Han J, Ducas RA, Tam JW, Renner E, Duhamel TA, Aliani M, Ravandi A, Krasuski RA. Association of Fontan Pathophysiology With Plasma Bile Acids. JACC. ADVANCES 2025; 4:101563. [PMID: 39827765 PMCID: PMC11787425 DOI: 10.1016/j.jacadv.2024.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Patients with Fontan circulation are frail and experience multisystem dysfunction including impaired exercise capacity, low resting and exercise-augmented cardiac output, and progressive liver fibrosis. However, common underlying biochemical abnormalities or disease-specific biomarkers have not been well-described. OBJECTIVES We wish to investigate Fontan and their matched healthy subjects using a nontargeted, followed by targeted metabolomic analysis. METHODS Patients with Fontan circulation were compared to age- and sex-matched healthy controls with regard to body composition, markers of frailty, cardiopulmonary exercise testing, and resting and exercise-augmented hemodynamics. Subsequently, the study participants underwent a nontargeted metabolomics assessment, followed by targeted plasma bile acid (BA) analysis. RESULTS Twenty Fontan patients (28.8 ± 9.8 years of age; 35% women) and 20 healthy controls (29.7 ± 6.0 years of age; 30% women) were enrolled. Fontan patients had significantly lower skeletal muscle mass, took longer to complete the 5 times sit-to-stand test; achieved lower %VO2 max, and had lower resting and postexercise hemodynamic parameters. Nontargeted metabolomics assessment demonstrated elevated BAs, oxylipins, and leucine metabolites in Fontan patients. Total BA as well as 17 BA components were markedly elevated in the Fontan patients. Selective BAs were negatively associated with age, degree of frailty, cardiopulmonary function, and hemodynamic parameters. CONCLUSIONS Elevated BAs are associated with worsening Fontan physiology. These findings warrant further exploration.
Collapse
Affiliation(s)
- Ashish H Shah
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Institute of Cardiovascular Sciences, Albrechtsen Research Center, St. Boniface Hospital, Winnipeg, MB, Canada.
| | - Arun Surendran
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Institute of Cardiovascular Sciences, Albrechtsen Research Center, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Pedram Hassan-Tash
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - C Nolan Turnbull
- Institute of Cardiovascular Sciences, Albrechtsen Research Center, St. Boniface Hospital, Winnipeg, MB, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| | - Nicole Johnston
- Institute of Cardiovascular Sciences, Albrechtsen Research Center, St. Boniface Hospital, Winnipeg, MB, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| | - David Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jun Han
- Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Robin A Ducas
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - James W Tam
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Eberhard Renner
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Todd A Duhamel
- Institute of Cardiovascular Sciences, Albrechtsen Research Center, St. Boniface Hospital, Winnipeg, MB, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Ravandi
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Institute of Cardiovascular Sciences, Albrechtsen Research Center, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Richard A Krasuski
- Division of Adult Congenital Heart Disease, Duke University Health System, Durham, NC, USA
| |
Collapse
|
2
|
Ziegler A, Sæves I, Almaas R. Differences in bile acid profiles between cholestatic diseases - Development of a high throughput assay for dried bloodspots. Clin Chim Acta 2024; 562:119864. [PMID: 38992821 DOI: 10.1016/j.cca.2024.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Cholestasis causes accumulation of bile acids (BAs) and changes the circulating bile acid profile. Quantification of circulating BAs in dried bloodspots (DBS) may demonstrate obstruction of bile flow and altered bile acid metabolism in the liver. High sample throughput enables rapid screening of cholestatic diseases. MATERIALS AND METHODS Ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used for optimizing separation and detection of the primary unconjugated BAs cholic acid (CA) and chenodeoxycholic acid (CDCA); the secondary unconjugated BAs ursodeoxycholic acid (UDCA), hyodeoxycholic acid (HDCA) and deoxycholic acid (DCA), as well as the glycine- and taurine-conjugated variants of CA, CDCA, DCA and UDCA. Donor blood was obtained to prepare DBS calibrators and quality controls for method development and validation. RESULTS We developed a quantitative bile acid assay with a run-time of two minutes, and one-step sample preparation of 3.2 mm DBS discs. Validation results demonstrated overall good performance and was considered fit for purpose. Children with Alagille syndrome, Aagenaes syndrome and alpha-1 antitrypsin deficiency had increased BAs in DBS from newborn screening samples compared with age matched controls, and had different bile acids profiles. CONCLUSION We propose that our high throughput assay allows bile acid profiling in DBS that can be a valuable assessment tool for early screening of cholestasis in children. Assaying BAs in dried bloodspots is key for early detection of cholestasis, and provides transferability to a newborn screening setting.
Collapse
Affiliation(s)
- Anders Ziegler
- Department of Pediatric Research, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; Department of Newborn Screening, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ingjerd Sæves
- Department of Newborn Screening, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Wang MX, Han J, Liu T, Wang RX, Li LT, Li ZD, Yang JC, Liu LL, Lu Y, Xie XB, Gong JY, Li SY, Zhang L, Ling V, Wang JS. Poly-hydroxylated bile acids and their prognostic roles in Alagille syndrome. World J Pediatr 2023; 19:652-662. [PMID: 36658452 DOI: 10.1007/s12519-022-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The liver manifestations of Alagille syndrome (ALGS) are highly variable, and factors affecting its prognosis are poorly understood. We asked whether the composition of bile acids in ALGS patients with good clinical outcomes differs from that in patients with poor outcomes and whether bile acids could be used as prognostic biomarkers. METHODS Blood for bile acid profiling was collected from genetically confirmed JAG1-associated ALGS patients before one year of age. A good prognosis was defined as survival with native liver and total bilirubin (TB) < 85.5 μmol/L, while a poor prognosis was defined as either liver transplantation, death from liver failure, or TB ≥ 85.5 μmol/L at the last follow-up. RESULTS We found that the concentrations of two poly-hydroxylated bile acids, tauro-2β,3α,7α,12α-tetrahydroxylated bile acid (THBA) and glyco-hyocholic acid (GHCA), were significantly increased in patients with good prognosis compared to those with poor prognosis [area under curve (AUC) = 0.836 and 0.782, respectively] in the discovery cohort. The same trend was also observed in the molar ratios of GHCA to glyco- chenodeoxycholic acid (GCDCA) and tetrahydroxylated bile acid (THCA) to tauro-chenodeoxycholic acid (TCDCA) (both AUC = 0.836). A validation cohort confirmed these findings. Notably, tauro-2β,3α,7α,12α-THBA achieved the highest prediction accuracy of 88.00% (92.31% sensitivity and 83.33% specificity); GHCA at > 607.69 nmol/L was associated with native liver survival [hazard ratio: 13.03, 95% confidence interval (CI): (2.662-63.753), P = 0.002]. CONCLUSIONS We identified two poly-hydroxylated bile acids as liver prognostic biomarkers of ALGS patients. Enhanced hydroxylation of bile acids may result in better clinical outcomes.
Collapse
Affiliation(s)
- Meng-Xuan Wang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jun Han
- University of Victoria-Genome BC Proteomics Centre and Division of Medical Sciences, Victoria, British Columbia, Canada
| | - Teng Liu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ren-Xue Wang
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Li-Ting Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Zhong-Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jun-Cong Yang
- University of Victoria-Genome BC Proteomics Centre and Division of Medical Sciences, Victoria, British Columbia, Canada
| | - Lang-Li Liu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Shi-Yu Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China
| | - Victor Ling
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
- Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China.
| |
Collapse
|
4
|
Zöllner J, Finer S, Linton KJ, van Heel DA, Williamson C, Dixon PH. Rare variant contribution to cholestatic liver disease in a South Asian population in the United Kingdom. Sci Rep 2023; 13:8120. [PMID: 37208429 PMCID: PMC10199085 DOI: 10.1038/s41598-023-33391-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
This study assessed the contribution of five genes previously known to be involved in cholestatic liver disease in British Bangladeshi and Pakistani people. Five genes (ABCB4, ABCB11, ATP8B1, NR1H4, TJP2) were interrogated by exome sequencing data of 5236 volunteers. Included were non-synonymous or loss of function (LoF) variants with a minor allele frequency < 5%. Variants were filtered, and annotated to perform rare variant burden analysis, protein structure, and modelling analysis in-silico. Out of 314 non-synonymous variants, 180 fulfilled the inclusion criteria and were mostly heterozygous unless specified. 90 were novel and of those variants, 22 were considered likely pathogenic and 9 pathogenic. We identified variants in volunteers with gallstone disease (n = 31), intrahepatic cholestasis of pregnancy (ICP, n = 16), cholangiocarcinoma and cirrhosis (n = 2). Fourteen novel LoF variants were identified: 7 frameshift, 5 introduction of premature stop codon and 2 splice acceptor variants. The rare variant burden was significantly increased in ABCB11. Protein modelling demonstrated variants that appeared to likely cause significant structural alterations. This study highlights the significant genetic burden contributing to cholestatic liver disease. Novel likely pathogenic and pathogenic variants were identified addressing the underrepresentation of diverse ancestry groups in genomic research.
Collapse
Affiliation(s)
| | - Sarah Finer
- Institute for Population Health Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kenneth J Linton
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Peter H Dixon
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
5
|
Sun W, Zhang X, Su H, Wang X, Qin F, Gong X, Wang B, Yu F. Genetic and clinical features of patients with intrahepatic cholestasis caused by citrin deficiency. J Pediatr Endocrinol Metab 2023:jpem-2022-0616. [PMID: 37146272 DOI: 10.1515/jpem-2022-0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVES Citrin deficiency (CD) is an autosomal recessive disease caused by mutations of the SLC25A13 gene, plasma bile acid profiles detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) could be an efficient approach for early diagnosis of intrahepatic cholestasis. The aim of this study was to investigate the genetic testing and clinical characteristics of a series of patients with CD, and to analyse plasma bile acid profiles in CD patients. METHODS We retrospectively analysed data from 14 patients (12 males and 2 females, age 1-18 months, mean 3.6 months) with CD between 2015 and 2021, including demographics, biochemical parameters, genetic test results, treatment, and clinical outcomes. In addition, 30 cases (15 males and 15 females, age 1-20 months, mean 3.8 months) with idiopathic cholestasis (IC) served as a control group. Plasma 15 bile acid profiles were compared between the CD and IC groups. RESULTS Eight different mutations of the SLC25A13 gene were detected in the 14 patients diagnosed with CD, of which three novel variants of the SLC25A13 gene were investigated, the c.1043C>T (p.P348L) in exon11, the c.1216dupG (p.A406 Gfs*13) in exon12 and the c.135G>C (p.L45F) in exon3. More than half of the patients with CD had prolonged neonatal jaundice, which was associated with significantly higher alpha-fetoprotein (AFP) levels, hyperlactatemia and hypoglycemia. The majority of patients were ultimately self-limited. Only one patient developed liver failure and died at the age of 1 year due to abnormal coagulation function. In addition, the levels of glycochenodeoxycholic acid (GCDCA), taurocholate (TCA), and taurochenodeoxycholic acid (TCDCA) were significantly increased in the CD group compared with those in the IC group. CONCLUSIONS Three novel variants of the SLC25A13 gene were identified for the first time, providing a reliable molecular reference and expanding the SLC25A13 gene spectrum in patients with CD. Plasma bile acid profiles could be a potential biomarker for non-invasive early diagnosis of patients with intrahepatic cholestasis caused by CD.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaoxi Zhang
- Department of Urology, Tian You Hospital Affiliated to Wuhan University of Science & Technology, Wuhan, China
| | - Hang Su
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaoxia Wang
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Fang Qin
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiangling Gong
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Bo Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Fei Yu
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
6
|
Sheps JA, Wang R, Wang J, Ling V. The protective role of hydrophilic tetrahydroxylated bile acids (THBA). Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158925. [PMID: 33713832 DOI: 10.1016/j.bbalip.2021.158925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 01/14/2023]
Abstract
Bile acids are key components of bile required for human health. In humans and mice, conditions of reduced bile flow, cholestasis, induce bile acid detoxification by producing tetrahydroxylated bile acids (THBA), more hydrophilic and less cytotoxic than the usual bile acids, which are typically di- or tri-hydroxylated. Mice deficient in the Bile Salt Export Pump (Bsep, or Abcb11), the primary bile acid transporter in liver cells, produce high levels of THBA, and avoid the severe liver damage typically seen in humans with BSEP deficiencies. THBA can suppress bile acid-induced liver damage in Mdr2-deficient mice, caused by their lack of phospholipids in bile exposing their biliary tracts to unbound bile acids. Here we review THBA-related works in both animals and humans, and discuss their potential relevance and applications as a class of functional bile acids.
Collapse
Affiliation(s)
- Jonathan A Sheps
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Renxue Wang
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jianshe Wang
- Department of Pediatrics, Fudan University Shanghai Medical College, The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Victor Ling
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, British Columbia, Canada.
| |
Collapse
|