1
|
Matsuyama T, Nagata H, Ozawa Y, Ito Y, Kimata H, Fujii K, Akino N, Ueda T, Nomura M, Yoshikawa T, Takenaka D, Kawai H, Sarai M, Izawa H, Ohno Y. High-resolution deep learning reconstruction for coronary CTA: compared efficacy of stenosis evaluation with other methods at in vitro and in vivo studies. Eur Radiol 2025:10.1007/s00330-025-11376-9. [PMID: 39903239 DOI: 10.1007/s00330-025-11376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE To directly compare coronary arterial stenosis evaluations by hybrid-type iterative reconstruction (IR), model-based IR (MBIR), deep learning reconstruction (DLR), and high-resolution deep learning reconstruction (HR-DLR) on coronary computed tomography angiography (CCTA) in both in vitro and in vivo studies. MATERIALS AND METHODS For the in vitro study, a total of three-vessel tube phantoms with diameters of 3 mm, 4 mm, and 5 mm and with simulated non-calcified stepped stenosis plaques with degrees of 0%, 25%, 50%, and 75% stenosis were scanned with area-detector CT (ADCT) and ultra-high-resolution CT (UHR-CT). Then, ADCT data were reconstructed using all methods, although UHR-CT data were reconstructed with hybrid-type IR, MBIR, and DLR. For the in vivo study, patients who had undergone CCTA at ADCT were retrospectively selected, and each CCTA data set was reconstructed with all methods. To compare the image noise and measurement accuracy at each of the stenosis levels, image noise, and inner diameter were evaluated and statistically compared. To determine the effect of HR-DLR on CAD-RADS evaluation accuracy, the accuracy of CAD-RADS categorization of all CCTAs was compared by using McNemar's test. RESULTS The image noise of HR-DLR was significantly lower than that of others on ADCT and UHR-CT (p < 0.0001). At a 50% and 75% stenosis level for each phantom, hybrid-type IR showed a significantly larger mean difference on ADCT than did others (p < 0.05). At in vivo study, 31 patients were included. Accuracy on HR-DLR was significantly higher than that on hybrid-type IR, MBIR, or DLR (p < 0.0001). CONCLUSION HR-DLR is potentially superior for coronary arterial stenosis evaluations to hybrid-type IR, MBIR, or DLR shown on CCTA. KEY POINTS Question How do coronary arterial stenosis evaluations by hybrid-type IR, MBIR, DLR, and HR-DLR compare to coronary CT angiography? Findings HR-DLR showed significantly lower image noise and more accurate coronary artery disease reporting and data system (CAD-RADS) evaluation than others. Clinical relevance HR-DLR is potentially superior to other reconstruction methods for coronary arterial stenosis evaluations, as demonstrated by coronary CT angiography results on ADCT and as shown in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuya Ito
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiko Nomura
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Hideki Kawai
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masayoshi Sarai
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideo Izawa
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiharu Ohno
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan.
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
2
|
Toritani H, Yoshida K, Hosokawa T, Tanabe Y, Yamamoto Y, Nishiyama H, Kido T, Kawaguchi N, Matsuda M, Nakano S, Miyazaki S, Uetani T, Inaba S, Yamaguchi O, Kido T. The Feasibility of a Model-Based Iterative Reconstruction Technique Tuned for the Myocardium on Myocardial Computed Tomography Late Enhancement. J Comput Assist Tomogr 2025; 49:85-92. [PMID: 39095055 DOI: 10.1097/rct.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study evaluated the feasibility of a model-based iterative reconstruction technique (MBIR) tuned for the myocardium on myocardial computed tomography late enhancement (CT-LE). METHODS Twenty-eight patients who underwent myocardial CT-LE and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) within 1 year were retrospectively enrolled. Myocardial CT-LE was performed using a 320-row CT with low tube voltage (80 kVp). Myocardial CT-LE images were scanned 7 min after CT angiography (CTA) without additional contrast medium. All myocardial CT-LE images were reconstructed with hybrid iterative reconstruction (HIR), conventional MBIR (MBIR_cardiac), and new MBIR tuned for the myocardium (MBIR_myo). Qualitative (5-grade scale) scores and quantitative parameters (signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]) were assessed as image quality. The sensitivity, specificity, and accuracy of myocardial CT-LE were evaluated at the segment level using an American Heart Association (AHA) 16-segment model, with LGE-MRI as a reference standard. These results were compared among the different CT image reconstructions. RESULTS In 28 patients with 448 segments, 160 segments were diagnosed with positive by LGE-MRI. In the qualitative assessment of myocardial CT-LE, the mean image quality scores were 2.9 ± 1.2 for HIR, 3.0 ± 1.1 for MBIR_cardiac, and 4.0 ± 1.0 for MBIR_myo. MBIR_myo showed a significantly higher score than HIR ( P < 0.001) and MBIR_cardiac ( P = 0.018). In the quantitative image quality assessment of myocardial CT-LE, the median image SNR was 10.3 (9.1-11.1) for HIR, 10.8 (9.8-12.1) for MBIR_cardiac, and 16.8 (15.7-18.4) for MBIR_myo. The median image CNR was 3.7 (3.0-4.6) for HIR, 3.8 (3.2-5.1) for MBIR_cardiac, and 6.4 (5.0-7.7) for MBIR_myo. MBIR_myo significantly improved the SNR and CNR of CT-LE compared to HIR and MBIR_cardiac ( P < 0.001). The sensitivity, specificity, and accuracy for the detection of myocardial CT-LE were 70%, 92%, and 84% for HIR; 71%, 92%, and 85% for MBIR_cardiac; and 84%, 92%, and 89% for MBIR_myo, respectively. MBIR_myo showed significantly higher image quality, sensitivity, and accuracy than the others ( P < 0.05). CONCLUSIONS MBIR tuned for myocardium improved image quality and diagnostic performance for myocardial CT-LE assessment.
Collapse
Affiliation(s)
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuta Yamamoto
- Department of Radiology, Saiseikai Matsuyama Hospital, Matsuyama City, Ehime Prefecture
| | - Hikaru Nishiyama
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Shota Nakano
- Canon Medical Systems Corporation, Otawara City, Tochigi Prefecture
| | - Shigehiro Miyazaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Shinji Inaba
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| |
Collapse
|
3
|
Schulz A, Otton J, Hussain T, Miah T, Schuster A. Clinical Advances in Cardiovascular Computed Tomography: From Present Applications to Promising Developments. Curr Cardiol Rep 2024; 26:1063-1076. [PMID: 39162955 PMCID: PMC11461626 DOI: 10.1007/s11886-024-02110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF THE REVIEW This review aims to provide a profound overview on most recent studies on the clinical significance of Cardiovascular Computed Tomography (CCT) in diagnostic and therapeutic pathways. Herby, this review helps to pave the way for a more extended but yet purposefully use in modern day cardiovascular medicine. RECENT FINDINGS In recent years, new clinical applications of CCT have emerged. Major applications include the assessment of coronary artery disease and structural heart disease, with corresponding recommendations by major guidelines of international societies. While CCT already allows for a rapid and non-invasive diagnosis, technical improvements enable further in-depth assessments using novel imaging parameters with high temporal and spatial resolution. Those developments facilitate diagnostic and therapeutic decision-making as well as improved prognostication. This review determined that recent advancements in both hardware and software components of CCT allow for highly advanced examinations with little radiation exposure. This particularly strengthens its role in preventive care and coronary artery disease. The addition of functional analyses within and beyond coronary artery disease offers solutions in wide-ranging patient populations. Many techniques still require improvement and validation, however, CCT possesses potential to become a "one-stop-shop" examination.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center, Göttingen, Germany
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - James Otton
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tarique Hussain
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Departments of Paediatrics, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - Tayaba Miah
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Departments of Paediatrics, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - Andreas Schuster
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center, Göttingen, Germany.
- FORUM Cardiology, Rosdorf, Germany.
| |
Collapse
|
4
|
Meloni A, Cau R, Saba L, Positano V, De Gori C, Occhipinti M, Celi S, Bossone E, Bertacchi J, Punzo B, Mantini C, Cavaliere C, Maffei E, Cademartiri F. Photon-Counting Computed Tomography Angiography of Carotid Arteries: A Topical Narrative Review with Case Examples. Diagnostics (Basel) 2024; 14:2012. [PMID: 39335691 PMCID: PMC11431079 DOI: 10.3390/diagnostics14182012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Photon counting computed tomography (PCCT) represents a paradigm shift from conventional CT imaging, propelled by a new generation of X-ray detectors capable of counting individual photons and measuring their energy. The first part of this narrative review is focused on the technical aspects of PCCT and describes its key advancements and benefits compared to conventional CT but also its limitations. By synthesizing the existing literature, the second part of the review seeks to elucidate the potential of PCCT as a valuable tool for assessing carotid artery disease. Thanks to the enhanced spatial resolution and image quality, PCCT allows for an accurate evaluation of carotid luminal stenosis. With its ability to finely discriminate between different tissue types, PCCT allows for detailed characterization of plaque morphology and composition, which is crucial for assessing plaque vulnerability and the risk of cerebrovascular events.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Cagliari, Italy; (R.C.); (L.S.)
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Cagliari, Italy; (R.C.); (L.S.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Eduardo Bossone
- Department of Cardiology, Antonio Cardarelli Hospital, 80131 Naples, Italy;
| | - Jacopo Bertacchi
- Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK;
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| |
Collapse
|
5
|
Catapano F, Lisi C, Savini G, Olivieri M, Figliozzi S, Caracciolo A, Monti L, Francone M. Deep Learning Image Reconstruction Algorithm for CCTA: Image Quality Assessment and Clinical Application. J Comput Assist Tomogr 2024; 48:217-221. [PMID: 37621087 DOI: 10.1097/rct.0000000000001537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
OBJECTIVE The increasing number of coronary computed tomography angiography (CCTA) requests raised concerns about dose exposure. New dose reduction strategies based on artificial intelligence have been proposed to overcome limitations of iterative reconstruction (IR) algorithms. Our prospective study sought to explore the added value of deep-learning image reconstruction (DLIR) in comparison with a hybrid IR algorithm (adaptive statistical iterative reconstruction-veo [ASiR-V]) in CCTA, even in clinical challenging scenarios, as obesity, heavily calcified vessels and coronary stents. METHODS We prospectively included 103 consecutive patients who underwent CCTA. Data sets were reconstructed with ASiR-V and DLIR. For each reconstruction signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) was calculated, and qualitative assessment was made with a four-point Likert scale by two independent and blinded radiologists with different expertise. RESULTS Both SNR and CNR were significantly higher in DLIR (SNR-DLIR median value [interquartile range] of 13.89 [11.06-16.35] and SNR-ASiR-V 25.42 [22.46-32.22], P < 0.001; CNR-DLIR 16.84 [9.83-27.08] vs CNR-ASiR-V 10.09 [5.69-13.5], P < 0.001).Median qualitative score was 4 for DLIR images versus 3 for ASiR-V ( P < 0.001), with a good interreader reliability [intraclass correlation coefficient(2,1)e intraclass correlation coefficient(3,1) 0.60 for DLIR and 0.62 and 0.73 for ASiR-V].In the obese and in the "calcifications and stents" groups, DLIR showed significantly higher values of SNR (24.23 vs 11.11, P < 0.001 and 24.55 vs 14.09, P < 0.001, respectively) and CNR (16.08 vs 8.04, P = 0.008 and 17.31 vs 10.14, P = 0.003) and image quality. CONCLUSIONS Deep-learning image reconstruction in CCTA allows better SNR, CNR, and qualitative assessment than ASiR-V, with an added value in the most challenging clinical scenarios.
Collapse
Affiliation(s)
| | - Costanza Lisi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Giovanni Savini
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marzia Olivieri
- Department of neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano Figliozzi
- From the Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Caracciolo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | | |
Collapse
|
6
|
Verelst E, Buls N, De Mey J, Nieboer KH, Vandenbergh F, Crotty D, Deak P, Sundvall A, Holmin S, De Smet A, Provyn S, Van Gompel G. Stent appearance in a novel silicon-based photon-counting CT prototype: ex vivo phantom study in head-to-head comparison with conventional energy-integrating CT. Eur Radiol Exp 2023; 7:23. [PMID: 37097376 PMCID: PMC10130245 DOI: 10.1186/s41747-023-00333-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND In this study, stent appearance in a novel silicon-based photon-counting computed tomography (Si-PCCT) prototype was compared with a conventional energy-integrating detector CT (EIDCT) system. METHODS An ex vivo phantom was created, consisting of a 2% agar-water mixture, in which human-resected and stented arteries were individually embedded. Using similar technique parameters, helical scan data was acquired using a novel prototype Si-PCCT and a conventional EIDCT system at a volumetric CT dose index (CTDIvol) of 9 mGy. Reconstructions were made at 502 and 1502 mm2 field-of-views (FOVs) using a bone kernel and adaptive statistical iterative reconstruction with 0% blending. Using a 5-point Likert scale, reader evaluations were performed on stent appearance, blooming and inter-stent visibility. Quantitative image analysis was performed on stent diameter accuracy, blooming and inter-stent distinction. Qualitative and quantitative differences between Si-PCCT and EIDCT systems were tested with a Wilcoxon signed-rank test and a paired samples t-test, respectively. Inter- and intra-reader agreement was assessed using the intraclass correlation coefficient (ICC). RESULTS Qualitatively, Si-PCCT images were rated higher than EIDCT images at 150-mm FOV, based on stent appearance (p = 0.026) and blooming (p = 0.015), with a moderate inter- (ICC = 0.50) and intra-reader (ICC = 0.60) agreement. Quantitatively, Si-PCCT yielded more accurate diameter measurements (p = 0.001), reduced blooming (p < 0.001) and improved inter-stent distinction (p < 0.001). Similar trends were observed for the images reconstructed at 50-mm FOV. CONCLUSIONS When compared to EIDCT, the improved spatial resolution of Si-PCCT yields enhanced stent appearance, more accurate diameter measurements, reduced blooming and improved inter-stent distinction. KEY POINTS • This study evaluated stent appearance in a novel silicon-based photon-counting computed tomography (Si-PCCT) prototype. • Compared to standard CT, Si-PCCT resulted in more accurate stent diameter measurements. • Si-PCCT also reduced blooming artefacts and improved inter-stent visibility.
Collapse
Affiliation(s)
- Emma Verelst
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZB), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Nico Buls
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZB), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Johan De Mey
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZB), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Koenraad Hans Nieboer
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZB), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Frans Vandenbergh
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZB), Laarbeeklaan 101, 1090, Brussels, Belgium
| | | | - Paul Deak
- GE Healthcare, Waukesha, WI, 53188, USA
| | - Albert Sundvall
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet and Department of Neuroradiology, 171 74, Stockholm, Sweden
| | - Aron De Smet
- Anatomical Research Training and Education, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Steven Provyn
- Anatomical Research Training and Education, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Gert Van Gompel
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZB), Laarbeeklaan 101, 1090, Brussels, Belgium
| |
Collapse
|
7
|
Kumari N, Ganga KP, Ojha V, Kumar S, Jagia P, Naik N, Gulati G, Sharma S. Low-dose ultra-high-pitch computed tomography coronary angiography: identifying the optimum combination of iteration strength and radiation dose reduction strategies to achieve true submillisievert scans. Diagn Interv Radiol 2023; 29:268-275. [PMID: 36987879 PMCID: PMC10679714 DOI: 10.4274/dir.2021.0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/01/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To identify the optimum strength of advanced modeled iterative reconstruction (ADMIRE) to achieve the best subjective and objective image quality when combining three-dose reduction strategies, ultra-high-pitch computed tomography coronary angiography (FLASH CTCA; with single-dose ivabradine to lower heart rate), low tube voltage, and ADMIRE. METHODS Sixty consecutive patients underwent FLASH CTCA at 100 kVp in this single-center prospective study. Single-dose ivabradine was administered to patients whose heart rate was above 75 bpm. Images were reconstructed using the three highest strengths of ADMIRE (A3, A4, and A5). Objective and subjective image quality (using a Likert scale) were evaluated in the three datasets. RESULTS The signal strength remained unchanged but mean noise significantly reduced across the increasing strengths of ADMIRE [signal: 513.78 ± 101.7 Hounsfield units (HU) at A3, 515.6 ± 100.5 HU at A4, and 519.7 ± 107.9 HU at A5; noise: 23.4 ± 4.5 HU at A3, 20.2 ± 3.6 HU at A4, and 17.2 ± 3.3 HU at A5]. Signal-to-noise and contrast-to-noise ratios were the highest at A5, and A5 offered significantly higher Likert scores in image noise, vessel sharpness, and overall image quality than A3 or A4. Additionally, A5 did not interfere with image interpretation in any patient. CONCLUSION Using all three dose reduction strategies during FLASH CTCA along with single-dose ivabradine administration ensures minimal radiation exposure in daily practice. In this study, A5 datasets had the best overall subjective and objective image quality despite their "plastic appearance". In the future, enhanced dose reduction can be obtained by further lowering tube voltages.
Collapse
Affiliation(s)
- Nidhi Kumari
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Kartik P. Ganga
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Vineeta Ojha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Jagia
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Gurpreet Gulati
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjiv Sharma
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Møller MB, Schuijf JD, Oyama-Manabe N, Linde JJ, Kühl JT, Lima JAC, Kofoed KF. Technical Considerations for Dynamic Myocardial Computed Tomography Perfusion as Part of a Comprehensive Evaluation of Coronary Artery Disease Using Computed Tomography. J Thorac Imaging 2023; 38:54-68. [PMID: 36044617 DOI: 10.1097/rti.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dynamic myocardial computed tomography perfusion (DM-CTP) has good diagnostic accuracy for identifying myocardial ischemia as compared with both invasive and noninvasive reference standards. However, DM-CTP has not yet been implemented in the routine clinical examination of patients with suspected or known coronary artery disease. An important hurdle in the clinical dissemination of the method is the development of the DM-CTP acquisition protocol and image analysis. Therefore, the aim of this article is to provide a review of critical parameters in the design and execution of DM-CTP to optimize each step of the examination and avoid common mistakes. We aim to support potential users in the successful implementation and performance of DM-CTP in daily practice. When performed appropriately, DM-CTP may support clinical decision making. In addition, when combined with coronary computed tomography angiography, it has the potential to shorten the time to diagnosis by providing immediate visualization of both coronary atherosclerosis and its functional relevance using one single modality.
Collapse
Affiliation(s)
- Mathias B Møller
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Joanne D Schuijf
- Global Research and Development Center, Canon Medical Systems Europe, Zoetermeer, The Netherlands
| | - Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Jesper J Linde
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Jørgen T Kühl
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Joao A C Lima
- Departments of Medicine and Radiology, Johns Hopkins Hospital and School of Medicine, Baltimore, MD
| | - Klaus F Kofoed
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
- Department of Radiology, Rigshospitalet, University of Copenhagen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Otgonbaatar C, Ryu JK, Shin J, Woo JY, Seo JW, Shim H, Hwang DH. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction. Korean J Radiol 2022; 23:1044-1054. [PMID: 36196766 PMCID: PMC9614292 DOI: 10.3348/kjr.2022.0127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to investigate whether a deep learning reconstruction (DLR) method improves the image quality, stent evaluation, and visibility of the valve apparatus in coronary computed tomography angiography (CCTA) when compared with filtered back projection (FBP) and hybrid iterative reconstruction (IR) methods. MATERIALS AND METHODS CCTA images of 51 patients (mean age ± standard deviation [SD], 63.9 ± 9.8 years, 36 male) who underwent examination at a single institution were reconstructed using DLR, FBP, and hybrid IR methods and reviewed. CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and stent evaluation, including 10%-90% edge rise slope (ERS) and 10%-90% edge rise distance (ERD), were measured. Quantitative data are summarized as the mean ± SD. The subjective visual scores (1 for worst -5 for best) of the images were obtained for the following: overall image quality, image noise, and appearance of stent, vessel, and aortic and tricuspid valve apparatus (annulus, leaflets, papillary muscles, and chordae tendineae). These parameters were compared between the DLR, FBP, and hybrid IR methods. RESULTS DLR provided higher Hounsfield unit (HU) values in the aorta and similar attenuation in the fat and muscle compared with FBP and hybrid IR. The image noise in HU was significantly lower in DLR (12.6 ± 2.2) than in hybrid IR (24.2 ± 3.0) and FBP (54.2 ± 9.5) (p < 0.001). The SNR and CNR were significantly higher in the DLR group than in the FBP and hybrid IR groups (p < 0.001). In the coronary stent, the mean value of ERS was significantly higher in DLR (1260.4 ± 242.5 HU/mm) than that of FBP (801.9 ± 170.7 HU/mm) and hybrid IR (641.9 ± 112.0 HU/mm). The mean value of ERD was measured as 0.8 ± 0.1 mm for DLR while it was 1.1 ± 0.2 mm for FBP and 1.1 ± 0.2 mm for hybrid IR. The subjective visual scores were higher in the DLR than in the images reconstructed with FBP and hybrid IR. CONCLUSION DLR reconstruction provided better images than FBP and hybrid IR reconstruction.
Collapse
Affiliation(s)
| | - Jae-Kyun Ryu
- Medical Imaging AI Research Center, Canon Medical Systems Korea, Seoul, Korea
| | - Jaemin Shin
- Department of Radiology, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Ji Young Woo
- Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jung Wook Seo
- Department of Radiology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Hackjoon Shim
- Medical Imaging AI Research Center, Canon Medical Systems Korea, Seoul, Korea.,ConnectAI Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Hyun Hwang
- Department of Radiology, Inje University Seoul Paik Hospital, Seoul, Korea.,Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Velangi PS, Agdamag AC, Nijjar PS, Pogatchnik B, Nijjar PS. Update on CT Imaging of Left Ventricular Assist Devices and Associated Complications. CURRENT CARDIOVASCULAR IMAGING REPORTS 2022. [DOI: 10.1007/s12410-022-09570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Tridandapani S, Banait-Deshmane S, Aziz MU, Bhatti P, Singh SP. Coronary computed tomographic angiography: A review of the techniques, protocols, pitfalls, and radiation dose. J Med Imaging Radiat Sci 2021; 52:S1-S11. [PMID: 34565701 DOI: 10.1016/j.jmir.2021.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022]
Abstract
Coronary computed tomographic angiography (CCTA) is a viable alternative to catheter coronary angiography for several clinical indications, chiefly because it is fast and non-invasive. For effective clinical use of CCTA, various technical and patient factors should be considered. In this brief review article, we discuss the indication and contraindications for CCTA, technical requirements for CCTA including radiation dose, patient preparation principles, image post-processing, and pitfalls and artifacts of CCTA.
Collapse
Affiliation(s)
- Srini Tridandapani
- Department of Radiology, University of Alabama, Birmingham, AL, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | | | | | - Pamela Bhatti
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Satinder P Singh
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
12
|
Coronary Computer Tomography Angiography in 2021-Acquisition Protocols, Tips and Tricks and Heading beyond the Possible. Diagnostics (Basel) 2021; 11:diagnostics11061072. [PMID: 34200866 PMCID: PMC8230532 DOI: 10.3390/diagnostics11061072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Recent technological advances, together with an increasing body of evidence from randomized trials, have placed coronary computer tomography angiography (CCTA) in the center of the diagnostic workup of patients with coronary artery disease. The method was proven reliable in the diagnosis of relevant coronary artery stenosis. Furthermore, it can identify different stages of the atherosclerotic process, including early atherosclerotic changes of the coronary vessel wall, a quality not met by other non-invasive tests. In addition, newer computational software can measure the hemodynamic relevance (fractional flow reserve) of a certain stenosis. In addition, if required, information related to cardiac and valvular function can be provided with specific protocols. Importantly, recent trials have highlighted the prognostic relevance of CCTA in patients with coronary artery disease, which helped establishing CCTA as the first-line method for the diagnostic work-up of such patients in current guidelines. All this can be gathered in one relatively fast examination with minimal discomfort for the patient and, with newer machines, with very low radiation exposure. Herein, we provide an overview of the current technical aspects, indications, pitfalls, and new horizons with CCTA, providing examples from our own clinical practice.
Collapse
|
13
|
Liang CR, Ong CC, Chai P, Teo LLS. Comparison of radiation dose, contrast enhancement and image quality of prospective ECG-Gated CT coronary angiography: Single versus dual source CT. Radiography (Lond) 2021; 27:831-839. [PMID: 33581989 DOI: 10.1016/j.radi.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The updated National Institute of Clinical Excellence (NICE) guidelines of 2017 state that new generation cardiac CT scanners (Aquilion ONE, Brilliance iCT, Discovery CT750 HD and Somatom Definition Flash) are recommended as an option for first-line imaging of the coronary arteries in people with suspected stable coronary artery disease (with an estimated likelihood of coronary artery disease of 10-29%) in whom imaging with earlier generation CT scanners is difficult. New generation cardiac CT scanners are also recommended as an option for first-line evaluation of disease progression, to establish need for revascularisation in people with known coronary artery disease in whom imaging with earlier generation CT scanners is difficult. CT scanning might not be necessary in situations in which immediate revascularisation is being considered. The European Society of Cardiology 2019 clinical practice guidelines recommend non-invasive functional imaging for myocardial ischaemia or coronary CT angiography (CTA) as the initial test to diagnose CAD in symptomatic patients in whom obstructive CAD cannot be excluded by clinical assessment alone. Given increased computed tomography coronary angiogram (CTCA) utilisation, radiation dose, contrast enhancement and image quality of prospective ECG-gated CTCA between 256-slice single-source and 192x2-slice dual-source CT scanners were retrospectively evaluated. METHODS Prospectively gated CTCA data from 63 patients on a 256-slice CT (group A) and 71 patients on a 192x2-slice dual source CT (group B) from January to December 2016 were retrospectively evaluated respectively. Scanner-reported dose length product values were used with a conversion factor (k = 0.014 mSv/mGy x cm) to estimate effective dose. Contrast enhancement was assessed with mean CT attenuation at selected regions of interest on axial coronary images. Image quality of the coronary arteries was assessed by a 4-point grading score (1 = non-diagnostic, 4 = excellent image quality). RESULTS The radiation doses in group B were significantly lower than group A (3.68 + 2.13 mSv versus 4.81 + 1.56 mSv, p < 0.001). There were no significant differences in contrast enhancement in the left coronary artery, proximal right coronary artery and left ventricular wall for both groups. Vessel image quality scores for group B were higher than group A (right coronary artery (RCA): 3.2 + 0.7 versus 2.4 + 0.7, p < 0.001; left anterior descending (LAD) artery: 3.0 + 0.8 vs 2.5 + 0.6, p < 0.001; left circumflex (LCx) artery: 3.3 + 0.7 vs 2.6 + 0.6, p < 0.001). Coronary artery contour scores for group B were significantly higher than group A (RCA: 3.2 + 0.8 versus 2.3 + 0.7, p < 0.001; LAD: 3.0 + 0.7 versus 2.4 + 0.6, p < 0.001; LCx: 3.3 + 0.6 versus 2.5 + 0.6, p < 0.001). CONCLUSION Prospective ECG-gated CTCA performed on 192x2-slice CT results in better image quality and lower radiation dose than 256-slice CT. There were no significant differences in contrast enhancement in left main coronary artery (LMCA), proximal RCA and left ventricular wall in both groups. IMPLICATIONS FOR PRACTICE In institutions with both 256-slice and 192x2-slice CT scanners, we recommend that CTCAs be preferentially performed using the 192x2-slice CT scanner.
Collapse
Affiliation(s)
- C R Liang
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - C C Ong
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - P Chai
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - L L S Teo
- Department of Diagnostic Imaging, National University Hospital, Singapore.
| |
Collapse
|
14
|
Liu H, Wingert A, Wang J, Zhang J, Wang X, Sun J, Chen F, Khalid SG, Jiang J, Zheng D. Extraction of Coronary Atherosclerotic Plaques From Computed Tomography Imaging: A Review of Recent Methods. Front Cardiovasc Med 2021; 8:597568. [PMID: 33644127 PMCID: PMC7903898 DOI: 10.3389/fcvm.2021.597568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Atherosclerotic plaques are the major cause of coronary artery disease (CAD). Currently, computed tomography (CT) is the most commonly applied imaging technique in the diagnosis of CAD. However, the accurate extraction of coronary plaque geometry from CT images is still challenging. Summary of Review: In this review, we focused on the methods in recent studies on the CT-based coronary plaque extraction. According to the dimension of plaque extraction method, the studies were categorized into two-dimensional (2D) and three-dimensional (3D) ones. In each category, the studies were analyzed in terms of data, methods, and evaluation. We summarized the merits and limitations of current methods, as well as the future directions for efficient and accurate extraction of coronary plaques using CT imaging. Conclusion: The methodological innovations are important for more accurate CT-based assessment of coronary plaques in clinical applications. The large-scale studies, de-blooming algorithms, more standardized datasets, and more detailed classification of non-calcified plaques could improve the accuracy of coronary plaque extraction from CT images. More multidimensional geometric parameters can be derived from the 3D geometry of coronary plaques. Additionally, machine learning and automatic 3D reconstruction could improve the efficiency of coronary plaque extraction in future studies.
Collapse
Affiliation(s)
- Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.,Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Aleksandra Wingert
- Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Jian'an Wang
- Department of Cardiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jucheng Zhang
- Department of Clinical Engineering, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xinhong Wang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Syed Ghufran Khalid
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Jun Jiang
- Department of Cardiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| |
Collapse
|
15
|
Eslami P, Thondapu V, Karady J, Hartman EMJ, Jin Z, Albaghdadi M, Lu M, Wentzel JJ, Hoffmann U. Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling. Int J Cardiovasc Imaging 2020; 36:2319-2333. [PMID: 32779078 PMCID: PMC8323761 DOI: 10.1007/s10554-020-01954-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
Improvements in spatial and temporal resolution now permit robust high quality characterization of presence, morphology and composition of coronary atherosclerosis in computed tomography (CT). These characteristics include high risk features such as large plaque volume, low CT attenuation, napkin-ring sign, spotty calcification and positive remodeling. Because of the high image quality, principles of patient-specific computational fluid dynamics modeling of blood flow through the coronary arteries can now be applied to CT and allow the calculation of local lesion-specific hemodynamics such as endothelial shear stress, fractional flow reserve and axial plaque stress. This review examines recent advances in coronary CT image-based computational modeling and discusses the opportunity to identify lesions at risk for rupture much earlier than today through the combination of anatomic and hemodynamic information.
Collapse
Affiliation(s)
- Parastou Eslami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Vikas Thondapu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Karady
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eline M J Hartman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Zexi Jin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mazen Albaghdadi
- Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Lu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Toia P, La Grutta L, Sollami G, Clemente A, Gagliardo C, Galia M, Maffei E, Midiri M, Cademartiri F. Technical development in cardiac CT: current standards and future improvements-a narrative review. Cardiovasc Diagn Ther 2020; 10:2018-2035. [PMID: 33381441 DOI: 10.21037/cdt-20-527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Non-invasive depiction of coronary arteries has been a great challenge for imaging specialists since the introduction of computed tomography (CT). Technological development together with improvements in spatial, temporal, and contrast resolution, progressively allowed implementation of the current clinical role of the CT assessment of coronary arteries. Several technological evolutions including hardware and software solutions of CT scanners have been developed to improve spatial and temporal resolution. The main challenges of cardiac computed tomography (CCT) are currently plaque characterization, functional assessment of stenosis and radiation dose reduction. In this review, we will discuss current standards and future improvements in CCT.
Collapse
Affiliation(s)
- Patrizia Toia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Ludovico La Grutta
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities (ProMISE), University of Palermo, Palermo, Italy
| | - Giulia Sollami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Alberto Clemente
- Fondazione Toscana G. Monasterio CNR - Regione Toscana, Pisa and Massa, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Area Vasta 1, ASUR Marche, Urbino (PU), Italy
| | - Massimo Midiri
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | | |
Collapse
|
17
|
Cardiac magnetic resonance imaging and computed tomography for the pediatric cardiologist. PROGRESS IN PEDIATRIC CARDIOLOGY 2020. [DOI: 10.1016/j.ppedcard.2020.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
CT Imaging of Left Ventricular Assist Devices and Associated Complications. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020. [DOI: 10.1007/s12410-020-09546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Abstract
Computed tomography angiography (CTA) has become a mainstay for the imaging of vascular diseases, because of high accuracy, availability, and rapid turnaround time. High-quality CTA images can now be routinely obtained with high isotropic spatial resolution and temporal resolution. Advances in CTA have focused on improving the image quality, increasing the acquisition speed, eliminating artifacts, and reducing the doses of radiation and iodinated contrast media. Dual-energy computed tomography provides material composition capabilities that can be used for characterizing lesions, optimizing contrast, decreasing artifact, and reducing radiation dose. Deep learning techniques can be used for classification, segmentation, quantification, and image enhancement.
Collapse
Affiliation(s)
- Prabhakar Rajiah
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55904, USA.
| |
Collapse
|
20
|
Tanabe Y, Kido T, Kimura F, Kobayashi Y, Matsunaga N, Yoshioka K, Yoshimura N, Mochizuki T. Japanese Survey of Radiation Dose Associated With Coronary Computed Tomography Angiography - 2013 Data From a Multicenter Registry in Daily Practice. Circ J 2020; 84:601-608. [PMID: 32074543 DOI: 10.1253/circj.cj-19-0843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although coronary computed tomography angiography (CTA) is frequently used for identifying coronary artery disease, no studies have investigated the radiation dose in detail in Japan. The aim of this study was to estimate the radiation dose of coronary CTA in Japanese clinical practice and to identify the independent predictors associated with radiation dose. METHODS AND RESULTS A multicenter, retrospective, observational study (54 institutions) was conducted for estimating the radiation dose of coronary CTA in 2,469 patients between January and December 2013. Independent predictors associated with radiation dose were investigated on linear regression analysis. Median dose-length product (DLP) was 809.0 mGy·cm (IQR, 350.0-1,368.8 mGy·cm), corresponding to an estimated radiation dose of 11 mSv. The DLP per site significantly differed between institutions (median DLP per site, 92-2,131 mGy·cm; P<0.05). Independent predictors associated with radiation dose on multivariable linear regression were body weight, heart rate, non-stable sinus rhythm, scan length, tube voltage setting, electrocardiogram (ECG)-gated scanning protocol, and the image reconstruction technique (P<0.05 each). CONCLUSIONS The coronary CTA radiation dose was relatively high in 2013, and it varied significantly between institutions. Effective strategies for radiation dose reduction were low tube voltage ≤100 kVp, retrospective ECG-gated scanning with dose modulation technique, prospective ECG-gated scanning, and the iterative reconstruction technique.
Collapse
Affiliation(s)
- Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine
| | - Fumiko Kimura
- Department of Radiology, PsI clinic
- Department of Radiology, Dia Medical Net
| | - Yasuyuki Kobayashi
- Department of Medical Information and Communication Technology Research, Graduate School of Medicine, St. Marianna University School of Medicine
| | - Naofumi Matsunaga
- Department of Radiology, Yamaguchi University Graduate School of Medicine
| | | | - Norihiko Yoshimura
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine
- Department of Radiology, I.M. Sechenov First Moscow State Medical University
| |
Collapse
|
21
|
Coronary computed tomography angiography using model-based iterative reconstruction algorithms in the detection of significant coronary stenosis: how the plaque type influences the diagnostic performance. Pol J Radiol 2019; 84:e522-e529. [PMID: 32082450 PMCID: PMC7016499 DOI: 10.5114/pjr.2019.91259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
Purpose To evaluate the ability of coronary computed tomography angiography (CCTA) with model-based iterative reconstruction (MBIR) algorithm in detecting significant coronary artery stenosis compared with invasive coronary angiography (ICA). Material and methods We retrospectively identified 55 patients who underwent CCTA using the MBIR algorithm with evidence of at least one significant stenosis (≥ 50%) and an ICA within three months. Patients were stratified based on calcium score; stenoses were classified by type and by coronary segment involved. Dose-length-product was compared with the literature data obtained with previous reconstruction algorithms. Coronary artery stenosis was estimated on ICAs based on a qualitative method. Results CCTA data were confirmed by ICA in 89% of subjects, and in 73% and 94% of patients with CS < 400 and ≥ 400, respectively. ICA confirmed 81% of calcific stenoses, 91% of mixed, and 67% of soft plaques. Both the dose exposure of patients with prospective acquisition (34) and the exposure of the whole population were significantly lower than the standard of reference (p < 0.001 and p = 0.007). Conclusions CCTA with MBIR is valuable in detecting significant coronary artery stenosis with a solid reduction of radiation dose. Diagnostic performance was influenced by plaque composition, being lower compared with ICA for patients with lower CAC score and soft plaques; the visualisation of an intraluminal hypodensity could cause false positives, particularly in D1 and MO segments.
Collapse
|
22
|
Hubbard L, Malkasian S, Zhao Y, Abbona P, Molloi S. Contrast-to-Noise Ratio Optimization in Coronary Computed Tomography Angiography: Validation in a Swine Model. Acad Radiol 2019; 26:e115-e125. [PMID: 30172714 DOI: 10.1016/j.acra.2018.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES The accuracy of coronary computed tomography (CT) angiography depends upon the degree of coronary enhancement as compared to the background noise. Unfortunately, coronary contrast-to-noise ratio (CNR) optimization is difficult on a patient-specific basis. Hence, the objective of this study was to validate a new combined diluted test bolus and CT angiography protocol for improved coronary enhancement and CNR. MATERIALS AND METHODS The combined diluted test bolus and CT angiography protocol was validated in six swine (28.9 ± 2.7 kg). Specifically, the aortic and coronary enhancement and CNR of a standard CT angiography protocol, and a new combined diluted test bolus and CT angiography protocol were compared to a reference retrospective CT angiography protocol. Comparisons for all data were made using box plots, t tests, regression, Bland-Altman, root-mean-square error and deviation, as well as Lin's concordance correlation. RESULTS The combined diluted test bolus and CT angiography protocol was found to improve aortic and coronary enhancement by 26% and 13%, respectively, as compared to the standard CT angiography protocol. More importantly, the combined protocol was found to improve aortic and coronary CNR by 29% and 20%, respectively, as compared to the standard protocol. CONCLUSION A new combined diluted test bolus and CT angiography protocol was shown to improve coronary enhancement and CNR as compared to an existing standard CT angiography protocol.
Collapse
Affiliation(s)
- Logan Hubbard
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA 92697
| | - Shant Malkasian
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA 92697
| | - Yixiao Zhao
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA 92697
| | - Pablo Abbona
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA 92697
| | - Sabee Molloi
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA 92697.
| |
Collapse
|
23
|
Chalian H, Kalisz K, Rassouli N, Dhanantwari A, Rajiah P. Utility of virtual monoenergetic images derived from a dual-layer detector-based spectral CT in the assessment of aortic anatomy and pathology: A retrospective case control study. Clin Imaging 2018; 52:292-301. [PMID: 30212800 DOI: 10.1016/j.clinimag.2018.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/21/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To evaluate the ability of the retrospectively generated virtual monoenergetic images (VMIs) from a dual-layer detector-based spectral computed tomography (SDCT) to augment aortic enhancement for the evaluation of aortic anatomy and pathology. METHODS 98 patients with suboptimal aortic enhancement (≤200 HU) were retrospectively identified from SDCT scans. VMI from 40 to 80 keV were generated. Attenuation, noise, SNR, and CNR were measured at seven levels in the aorta. Image quality was graded on a 5-point scale, 5 being the best. From the VMI, an ideal set was chosen with mean vascular attenuation above 200 HU while maintaining diagnostic quality. Image parameters and quality of this ideal-set were compared to the standard 120-kVp images. RESULTS The mean attenuation of all seven measured anatomical regions was 156.6 ± 61.7 HU in the 120-kVp images. Attenuation of the VMI from 40 to 70 keV were higher than the 120-kVp image, measuring 439.2 ± 215.3 HU, 298.5 ± 140.6 HU, 213.4 ± 94.3 HU, and 164.7 ± 90.2 HU, for 40 keV, 50 keV, 60 keV, and 70 keV, respectively (p value <0.01 for 40, 50, 60 keV; 0.07 for 70 keV). SNR and CNR showed similar trends. The 50 keV VMI had the best image quality (4.48 ± 0.84 vs. 2.24 ± 0.92 on 120-kVp images, p < 0.001). Attenuation, CNR, and SNR increased by 90.6%, 85.0%, and 108.1% at 50 keV compared to 120-kVp. CONCLUSIONS A contrast-enhanced CT study can be optimized for the assessment of the aorta by using low-energy VMI obtained using SDCT. At the optimal monoenergetic level, attenuation, SNR, CNR and image quality were significantly higher than that of conventional polyenergetic images.
Collapse
Affiliation(s)
- Hamid Chalian
- Department of Radiology, University Hospital Cleveland Medical Center, Cleveland, OH, United States; Duke University Medical Center, Durham, NC, United States.
| | - Kevin Kalisz
- Department of Radiology, University Hospital Cleveland Medical Center, Cleveland, OH, United States; Duke University Medical Center, Durham, NC, United States.
| | - Negin Rassouli
- Department of Radiology, University Hospital Cleveland Medical Center, Cleveland, OH, United States.
| | | | - Prabhakar Rajiah
- Department of Radiology, University Hospital Cleveland Medical Center, Cleveland, OH, United States; Cardiothoracic Imaging, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Wood BM, Jia G, Carmichael O, Mcklveen K, Homberger DG. 3D MRI Modeling of Thin and Spatially Complex Soft Tissue Structures without Shrinkage: Lamprey Myosepta as an Example. Anat Rec (Hoboken) 2018; 301:1745-1763. [PMID: 29752863 DOI: 10.1002/ar.23857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 11/10/2022]
Abstract
3D imaging techniques enable the nondestructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for nonclinical research than X-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise noncubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. Anat Rec, 301:1745-1763, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley M Wood
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guang Jia
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Owen Carmichael
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808
| | - Kevin Mcklveen
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808
| | - Dominique G Homberger
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
25
|
Rajiah P, Abbara S. Advances in cardiac CT. Cardiovasc Diagn Ther 2017; 7:429-431. [PMID: 29255686 DOI: 10.21037/cdt.2017.08.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prabhakar Rajiah
- Associate Professor of Radiology, Associate Director, Cardiac CT and MRI, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Suhny Abbara
- Professor, Department of Radiology, Chief Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|