1
|
Zhang M, Ding Q, Bian C, Su J, Xin Y, Jiang X. Progress on the molecular mechanism of portal vein tumor thrombosis formation in hepatocellular carcinoma. Exp Cell Res 2023; 426:113563. [PMID: 36944406 DOI: 10.1016/j.yexcr.2023.113563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, with poor prognosis and high mortality. Early-stage HCC has no obvious clinical symptoms, and most patients are already at an advanced stage when they are diagnosed. Portal vein tumor thrombus (PVTT) is the most common complication and a poor prognostic factor for HCC, which frequently leads to portal vein hypertension, ascites, gastrointestinal bleeding, and tumor metastasis. The formation of PVTT is related to the complex structure and hemodynamic changes of the portal vein and is closely related to changes at the cellular and molecular levels. The differentially-expressed genes (DEGs) between PVTT and primary tumor (PT) suggest that the two tissues may have different clonal origins. Epigenetic and proteomic analyses also suggest complex and diverse mechanisms for the formation of PVTT. In addition, the tumor microenvironment and energy metabolism pathways are interrelated in regulating the invasion and progression of PVTT. Aerobic glycolysis and the tumor immune microenvironment have been the focus of recent studies on PVTT. In this review, we summarize the mechanism of PVTT formation at the cellular and molecular levels to provide information to guide better prevention and treatment of PVTT in the clinic.
Collapse
Affiliation(s)
- Min Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Qiuhui Ding
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Zhou XH, Li JR, Zheng TH, Chen H, Cai C, Ye SL, Gao B, Xue TC. Portal vein tumor thrombosis in hepatocellular carcinoma: molecular mechanism and therapy. Clin Exp Metastasis 2023; 40:5-32. [PMID: 36318440 DOI: 10.1007/s10585-022-10188-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Portal vein tumor thrombosis (PVTT), a common complication of advanced hepatocellular carcinoma (HCC), remains the bottleneck of the treatments. Liver cancer cells potentially experienced multi-steps during PVTT process, including cancer cells leave from cancer nest, migrate in extracellular matrix, invade the vascular barrier, and colonize in the portal vein. Accumulated evidences have revealed numerous of molecular mechanisms including genetic and epigenetic regulation, cancer stem cells, immunosuppressive microenvironment, hypoxia, et al. contributed to the PVTT formation. In this review, we discuss state-of-the-art PVTT research on the potential molecular mechanisms and experimental models. In addition, we summarize PVTT-associated clinical trials and current treatments for PVTT and suppose perspectives exploring the molecular mechanisms and improving PVTT-related treatment for the future.
Collapse
Affiliation(s)
- Xing-Hao Zhou
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Jing-Ru Li
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Tang-Hui Zheng
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Hong Chen
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Chen Cai
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Sheng-Long Ye
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai Medical College, Shanghai, 200032, China.
| | - Tong-Chun Xue
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Huang Z, Wang Z, Xia H, Ge Z, Yu L, Li J, Bao H, Liang Z, Cui Y, Xu Y. Long noncoding RNA HAND2-AS1: A crucial regulator of malignancy. Clin Chim Acta 2023; 539:162-169. [PMID: 36528049 DOI: 10.1016/j.cca.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (LncRNAs) are single-stranded RNAs over 200 nucleotides in length that have no protein-coding function and have long been considered non-functional by-products of transcription. Recent studies have shown that dysregulation of lncRNAs may be involved in the malignant biological behavior of tumors. Targeted regulation of lncRNAs has become a research focus of anti-tumor treatment. LncRNAs heart and neural crest derivatives expressed 2 antisense RNA 1 (HAND2-AS1) was down-regulated in various tumors and can be used as a critical tumor regulator to modulate tumor cells proliferation, apoptosis, metastasis, invasion, metabolism and drug resistance. Additionally, aberrantly expressed HAND2-AS1 was closely related to the clinical pathological characteristics of cancer patients and serve as a promising tumor diagnostic and prognostic biomarker. This article aims to review the roles of HAND2-AS1 in tumorigenesis and development, as well as the underlying molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhensheng Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Ziqiang Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China; The key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, Heilongjiang, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China; The key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, Heilongjiang, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
4
|
Chen L, Liao X, Jiang X, Yan J, Liang J, Hongwei L. Identification of Metastasis-Associated Genes in Cutaneous Squamous Cell Carcinoma Based on Bioinformatics Analysis and Experimental Validation. Adv Ther 2022; 39:4594-4612. [PMID: 35947350 DOI: 10.1007/s12325-022-02276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/19/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cutaneous squamous cell carcinoma (cSCC) is a global malignant tumor with a high degree of malignancy. Once metastasis occurs, it will lead to poor prognosis and even death. This study attempts to find out the central genes closely related to cSCC metastasis, so as to clarify the molecular regulatory mechanism of cSCC metastasis and open up new ideas for clinical treatment. METHODS Firstly, cSCC data set GSE98767 was used to establish a tumor metastasis model via clustering analysis. The key module and hub genes associated with cSCC metastasis were analyzed by weighted gene co-expression analysis (WGCNA). Next, the prognostic functions of hub genes were identified by functional and pathway enrichment analysis, pan-cancer analysis, and receiver operating characteristic-area under the curve (ROC-AUC) validation. Finally, the key genes were verified by clinical sample detection and biological in vitro test. RESULTS A total of 19 hub genes related to cSCC metastasis were identified. They were highly expressed in cSCC metastatic tissues and were mainly enriched in cellular material and energy metabolism pathways. Overall survival (OS) and disease-free survival (DFS) results from pan-cancer analysis showed that eight and six highly expressed genes, respectively, with PAPSS2 and SCG5 had highly reliable ROC-AUC validation values and were poor prognostic factors. Clinical and biological tests also confirmed the upregulation of PAPSS2 and SCG5 in cSCC. Deletion of PAPSS2 and SCG5 resulted in decreased viability, migration, and invasion of A-431 cells. CONCLUSION PAPSS2 and SCG5 may be important factors for cSCC metastasis, and they are involved in the regulation of cSCC cell viability, migration, and invasion.
Collapse
Affiliation(s)
- Lang Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Jianxin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Jiaji Liang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Liu Hongwei
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China. .,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|