1
|
Ha S, Wong VWS, Zhang X, Yu J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2024; 74:141-152. [PMID: 38950910 PMCID: PMC11671994 DOI: 10.1136/gutjnl-2024-332398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a wide spectrum of liver injuries, ranging from hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis to MASLD-associated hepatocellular carcinoma (MASLD-HCC). Recent studies have highlighted the bidirectional impacts between host genetics/epigenetics and the gut microbial community. Host genetics influence the composition of gut microbiome, while the gut microbiota and their derived metabolites can induce host epigenetic modifications to affect the development of MASLD. The exploration of the intricate relationship between the gut microbiome and the genetic/epigenetic makeup of the host is anticipated to yield promising avenues for therapeutic interventions targeting MASLD and its associated conditions. In this review, we summarise the effects of gut microbiome, host genetics and epigenetic alterations in MASLD and MASLD-HCC. We further discuss research findings demonstrating the bidirectional impacts between gut microbiome and host genetics/epigenetics, emphasising the significance of this interconnection in MASLD prevention and treatment.
Collapse
Affiliation(s)
- Suki Ha
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
3
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Papanastasatou M, Verykokakis M. Innate-like T lymphocytes in chronic liver disease. Front Immunol 2023; 14:1114605. [PMID: 37006304 PMCID: PMC10050337 DOI: 10.3389/fimmu.2023.1114605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
In addition to its metabolic activities, it is now clear that the liver hosts a number of diverse immune cell types that control tissue homeostasis. Foremost among these are innate-like T lymphocytes, including natural killer T (NKT) and mucosal-associated innate T (MAIT) cells, which are a population of specialized T cells with innate characteristics that express semi-invariant T cell receptors with non-peptide antigen specificity. As primary liver residents, innate-like T cells have been associated with immune tolerance in the liver, but also with a number of hepatic diseases. Here, we focus on the biology of NKT and MAIT cells and how they operate during the course of chronic inflammatory diseases that eventually lead to hepatocellular carcinoma.
Collapse
|
5
|
Si YC, Ren CC, Zhang EW, Kang ZX, Mo XY, Li QQ, Chen B. Integrative Analysis of the Gut Microbiota and Metabolome in Obese Mice with Electroacupuncture by 16S rRNA Gene Sequencing and HPLC-MS-based Metabolic Profiling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:673-690. [PMID: 35282806 DOI: 10.1142/s0192415x22500276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acupuncture has been used to treat numerous diseases such as obesity in China for thousands of years. Several mechanisms of acupuncture on obesity have been surveyed based on metabolomics, but the effects of acupuncture on the alterations in the gut flora are still unclear. In this study, an integrated approach based on 16S rRNA gene sequencing combined with high-performance liquid chromatography-mass spectrometry (HPLC-MS) metabolic profiling was conducted to investigate the effects of acupuncture on high-fat-diet-induced obesity through the regulation of the relative abundances of gut microbiota and their relationships with biomarker candidates. A total of 10 significantly altered bacterial genera and 11 metabolites were recognized, which recovered to normal levels after electroacupuncture treatment. The relative abundances of the bacterial families Muribaculaceae,Lachnospiraceae,Desulfovibrionaceae,Helicobacteraceae, Prevotellaceae,Ruminococcaceae,Rikenellaceae,Deferribacteraceae,Bacteroidaceae andTannerellaceaewere remarkedly changed among the three groups. Potential biomarkers, including LysoPC(0:0/16:0) ([Formula: see text]1),PC(0:0/18:0) ([Formula: see text]2),Cholic acid([Formula: see text]3),LysoPC(16:0) ([Formula: see text]4), 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid([Formula: see text]5), 5beta-Cyprinolsulfate([Formula: see text]6),PC(18:0/0:0) ([Formula: see text]7), 1-Nitro-5-hydroxy-6-glutathionyl-5,6-dihydronaphthalene([Formula: see text]8),Glycocholic acid([Formula: see text]9),[Formula: see text]-Arginine([Formula: see text]10) andGulonic acid([Formula: see text]11), were involved in several metabolic pathways, such as the glycerophospholipid metabolism and primary bile acid biosynthesis. Interestingly, there was a strong correlation between the perturbed gut flora in Bilophila and Bifidobacterium and the altered intestinal metabolite of 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid and Cholanoic acid and [Formula: see text]-Arginine. This finding suggested that the effects of electroacupuncture might change the proportions of Bilophila and Bifidobacterium by regulating the constituents of the functional metabolite of 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid and Cholanoic acid and [Formula: see text]-Arginine. These results indicated that the effects of electroacupuncture focused on custom metabolic pathways as well as depend on the changes in the gut microbiota in obesity. These findings suggest that the 16S rRNA gene sequencing and HPLC-MS-based metabolomics approach can be applied to comprehensively assess the effects of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yuan-Cheng Si
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Chen-Chen Ren
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Er-Wei Zhang
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Zhao-Xia Kang
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Xi-Ya Mo
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Qing-Qing Li
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Bo Chen
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|