1
|
Ciner A, Hosein PJ, Jiang Y, Rassool F. The Interplay Between DNA Repair and the Immune Microenvironment in Pancreatic Cancer. Biomedicines 2025; 13:1031. [PMID: 40426860 DOI: 10.3390/biomedicines13051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
This narrative review describes the relationship between DNA repair and the immune microenvironment in pancreatic cancer and its potential clinical relevance. Pancreatic cancer is a devastating disease, often diagnosed at an advanced and incurable stage. BRCA or PALB2 mutations occur in a small subset, disabling accurate DNA double-strand break repair and sensitizing tumors to platinum-based chemotherapy and poly-ADP ribose polymerase inhibitors. While immune checkpoint blockade targeting PD1 and CTLA4 is ineffective for most patients, accumulating translational work indicates that those with BRCA or PALB2 mutations harbor a distinct and more permissive immune microenvironment. The phase 2 TAPUR study and retrospective series demonstrate that combined PD1 and CTLA4 inhibition can be effective for this subgroup of patients. In this manuscript, we review the current treatment landscape, the underlying mechanisms for immune resistance, and the interplay between defective DNA repair and the immune microenvironment in pancreatic cancer.
Collapse
Affiliation(s)
- Aaron Ciner
- Greenebaum Comprehensive Cancer Center, School of Medicine Baltimore, University of Maryland, Baltimore, MD 21201, USA
| | - Peter J Hosein
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Yixing Jiang
- Greenebaum Comprehensive Cancer Center, School of Medicine Baltimore, University of Maryland, Baltimore, MD 21201, USA
| | - Feyruz Rassool
- Greenebaum Comprehensive Cancer Center, School of Medicine Baltimore, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Chi H, Shi L, Gan S, Fan G, Dong Y. Innovative Applications of Nanopore Technology in Tumor Screening: An Exosome-Centric Approach. BIOSENSORS 2025; 15:199. [PMID: 40277513 PMCID: PMC12024935 DOI: 10.3390/bios15040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Its complex pathogenesis and metastasis pose significant challenges for early diagnosis, underscoring the urgent need for innovative and non-invasive tumor screening methods. Exosomes, small extracellular vesicles that reflect the physiological and pathological states of their parent cells, are uniquely suited for cancer liquid biopsy due to their molecular cargo, including RNA, DNA, and proteins. However, traditional methods for exosome isolation and detection are often limited by inadequate sensitivity, specificity, and efficiency. Nanopore technology, characterized by high sensitivity and single-molecule resolution, offers powerful tools for exosome analysis. This review highlights its diverse applications in tumor screening, such as magnetic nanopores for high-throughput sorting, electrochemical sensing for real-time detection, nanomaterial-based assemblies for efficient capture, and plasmon resonance for ultrasensitive analysis. These advancements have enabled precise exosome detection and demonstrated promising potential in the early diagnosis of breast, pancreatic, and prostate cancers, while also supporting personalized treatment strategies. Additionally, this review summarizes commercialized products for exosome-based cancer diagnostics and examines the technical and translational challenges in clinical applications. Finally, it discusses the future prospects of nanopore technology in advancing liquid biopsy toward clinical implementation. The continued progress of nanopore technology not only accelerates exosome-based precision medicine but also represents a significant step forward in next-generation liquid biopsy and tumor screening.
Collapse
Affiliation(s)
- Heng Chi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | - Liuxin Shi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | | | | | - Yuliang Dong
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
- BGI Research, Hangzhou 310030, China;
| |
Collapse
|
3
|
Blanco Abad C, Gomila Pons P, Campos Ramírez S, Álvarez Alejandro M, Torres Ramón MI, Miramar Gallart MD, Izquierdo Álvarez S, Polo Marques E, Pazo Cid R. Hereditary Pancreatic Cancer: Advances in Genetic Testing, Early Detection Strategies, and Personalized Management. J Clin Med 2025; 14:367. [PMID: 39860372 PMCID: PMC11766428 DOI: 10.3390/jcm14020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of approximately 13% for advanced stages. While the majority of PDAC cases are sporadic, a significant subset is attributable to hereditary and familial predispositions, accounting for approximately 25% of cases. This article synthesizes recent advancements in the understanding, detection, and management of hereditary pancreatic cancer (PC). Results: Our review highlights the critical role of genetic testing (GT) in identifying high-risk individuals (HRIs), with germline pathogenic variants (PVs) found in up to 20% of hereditary PDAC cases. Since the implementation of next-generation sequencing (NGS) panels in 2014, detection capabilities have been significantly enhanced. HRIs can be included in screening programs that facilitate the early detection of PDAC. Early detection strategies, including the use of microribonucleic acid (miRNAs) signatures and novel imaging techniques like hyperpolarized 13C-magnetic resonance spectroscopy (MRS) have shown promising results. The identification of germline pathogenic variants (PVs) or mutations in homologous recombination (HR) genes plays a predictive role in the response to various treatments, prolonging patient survival. Discussion: Universal germline testing for PDAC, as recommended by the National Comprehensive Cancer Network (NCCN), is now a standard practice, facilitating the identification of at-risk individuals and enabling targeted surveillance and intervention. Multidisciplinary management, integrating genetic counseling, imaging, and gastrointestinal services, is essential for optimizing outcomes. Conclusions: Advances in genetic testing and biomarker research are transforming the landscape of hereditary PC management. Early detection and personalized treatment strategies are pivotal in improving survival rates. Ongoing multi-institutional research efforts are crucial for validating biomarkers and developing preventive measures, ultimately aiming to reduce the burden of this aggressive cancer.
Collapse
Affiliation(s)
- Carmen Blanco Abad
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
| | - Paula Gomila Pons
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
| | - Sara Campos Ramírez
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
| | - María Álvarez Alejandro
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
- Medical Oncology Department, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - María Irene Torres Ramón
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
- Medical Oncology Department, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | | | - Silvia Izquierdo Álvarez
- Genetics Unit, Biochemistry Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
| | - Eduardo Polo Marques
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
| | - Roberto Pazo Cid
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Medical Oncology Department, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, Faculty of Medicine, Zaragoza University, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
5
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|