1
|
Li X, Wang Y, Wang X, Shen Y, Yuan Y, He Q, Mao S, Wu C, Zhou M. Downregulation of SMAD4 protects HaCaT cells against UVB-induced damage and oxidative stress through the activation of EMT. Photochem Photobiol Sci 2024; 23:1051-1065. [PMID: 38684635 DOI: 10.1007/s43630-024-00574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
As a member of the SMAD family, SMAD4 plays a crucial role in several cellular biological processes. However, its function in UVB radiation-induced keratinocyte damage is not yet clarified. Our study aims to provide mechanistic insight for the development of future UVB protective therapies and therapeutics involving SMAD4. HaCaT cells were treated with UVB, and the dose dependence and time dependence of UVB were measured. The cell function of UVB-treated HaCaT cells and the activity of epithelial-mesenchymal transition (EMT) after overexpression or silencing of SMAD4 was observed by flow cytometry, quantitative reverse transcription PCR (qRT-PCR) and Western Blots (WB). We found that a significant decrease in SMAD4 was observed in HaCaT cells induced by UVB. Our data confirm SMAD4 as a direct downstream target of miR-664. The down-regulation of SMAD4 preserved the viability of the UVB-treated HaCaT cells by inhibiting autophagy or apoptosis. Furthermore, the silencing of SMAD4 activated the EMT process in UVB-treated HaCaT cells. Down-regulation of SMAD4 plays a protective role in UVB-treated HaCaT cells via the activation of EMT.
Collapse
Affiliation(s)
- Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545000, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, 317502, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Yancheng Center for Disease Control and Prevention, Yancheng, 224000, China
| | - Xian Wang
- Department of Public Health and Management, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yi Shen
- Department of Public Health and Management, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qingquan He
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, 317502, China
| | - Shuyi Mao
- Nuclear Medicine Department, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Cailian Wu
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545000, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Lozar T, Wang W, Gavrielatou N, Christensen L, Lambert PF, Harari PM, Rimm DL, Burtness B, Grasic Kuhar C, Carchman EH. Emerging Prognostic and Predictive Significance of Stress Keratin 17 in HPV-Associated and Non HPV-Associated Human Cancers: A Scoping Review. Viruses 2023; 15:2320. [PMID: 38140561 PMCID: PMC10748233 DOI: 10.3390/v15122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Leslie Christensen
- Ebling Library, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Paul M. Harari
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L. Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Evie H. Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
3
|
Liang H, Zhu Y, Wu YK. Ampulla of Vater carcinoma: advancement in the relationships between histological subtypes, molecular features, and clinical outcomes. Front Oncol 2023; 13:1135324. [PMID: 37274233 PMCID: PMC10233008 DOI: 10.3389/fonc.2023.1135324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
The incidence of ampulla of Vater carcinoma, a type of periampullary cancer, has been increasing at an annual percentage rate of 0.9%. However, patients with ampulla of Vater carcinoma have quite different prognoses due to the heterogeneities of the tissue origin of this carcinoma. In addition to TNM staging, histological subtypes and molecular features of ampulla of Vater carcinoma are the key factors for predicting the clinical outcomes of patients. Fortunately, with the development of testing technology, information on the histological subtypes and molecular features of ampulla of Vater carcinoma is increasingly being analyzed in-depth. Patients with the pancreaticobiliary subtype have shorter survival times. In immunohistochemical examination, high cutoff values of positive MUC1 staining can be used to accurately predict the outcome of patients. Mutant KRAS, TP53, negative SMAD4 expression, and microsatellite stability are related to poor prognosis, while the clinical value of BRCA1/BRCA2 mutations is limited for prognosis. Testing the histological subtypes and molecular characteristics of ampulla of Vater carcinoma not only is the key to prognosis analysis but also provides extra information for targeted treatment to improve the clinical outcomes of patients.
Collapse
|
4
|
Apurva, Abdul Sattar RS, Ali A, Nimisha, Kumar Sharma A, Kumar A, Santoshi S, Saluja SS. Molecular pathways in periampullary cancer: An overview. Cell Signal 2022; 100:110461. [PMID: 36096460 DOI: 10.1016/j.cellsig.2022.110461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
Molecular alterations in oncogenes and tumor suppressors in various signaling pathways are basis for personalized therapy in cancer. Periampullary carcinoma behaves differently from pancreatic carcinoma both in prognosis and outcome, therefore it needs special attention. Pancreatic cancer have higher incidence of nodal spread and perineural &lymphovascular invasion suggesting it biologically more aggressive tumor compared to periampullary cancer. Since PAC tumors consist of heterogenous tissue of origin, they might contain different mutations in tumor associated genes and other changes in tissue composition among different subgroups clubbed together. Significant progress has been made in understanding the molecular nature of PAC in the previous two decades, and a large number of mutations and other genetic changes have been identified as being responsible for the disease. This review article targets to collate and discuss the molecular evolution of PAC and their implication in its outcome. As per literature, mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and Wnt signaling are the most common pathways involved in PAC. Mutations in KRAS, TP53, CTNNB1, SMAD4 and APC genes were the most frequently reported. I-subtype resembles colorectal cancer while the morphology of PB-type shows close resemblance to pancreatic tumors. The frequency of driver gene mutations is higher in I-type compared to PB-type of PAC indicating I-type to be genetically more unstable. The genetic landscape of PAC obtained from WES data highlighted PI3/AKT pathway to be a primary target in I-type and RAS/RAF in PB-type.
Collapse
Affiliation(s)
- Apurva
- Central Molecular Lab, GovindBallabhPant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Amity University, Noida, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Lab, GovindBallabhPant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Lab, GovindBallabhPant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Lab, GovindBallabhPant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Lab, GovindBallabhPant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Lab, GovindBallabhPant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | | | - Sundeep Singh Saluja
- Central Molecular Lab, GovindBallabhPant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, GovindBallabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
5
|
Dynamic contract-enhanced CT-based radiomics for differentiation of pancreatobiliary-type and intestinal-type periampullary carcinomas. Clin Radiol 2021; 77:e75-e83. [PMID: 34753589 DOI: 10.1016/j.crad.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
AIM To investigate whether computed tomography (CT) radiomics can differentiate pancreatobiliary-type from intestinal-type periampullary carcinomas. MATERIALS AND METHODS CT radiomics of 96 patients (54 pancreatobiliary type and 42 intestinal type) with surgically confirmed periampullary carcinoma were assessed retrospectively. Volumes of interest (VOIs) were delineated manually. Radiomic features were extracted from preoperative CT images. A single-phase model and combined-phase model were constructed. Five-fold cross-validation and five machine-learning algorithms were utilised for model construction. The diagnostic performance of the models was evaluated by receiver operating characteristic (ROC) curves, and indicators included area under the curve (AUC), accuracy, sensitivity, specificity, and precision. ROC curves were compared using DeLong's test. RESULTS A total of 788 features were extracted on each phase. After feature selection using least absolute shrinkage and selection operator (LASSO) algorithm, the number of selected optimal feature was 18 (plain scan), nine (arterial phase), two (venous phase), 23 (delayed phase), 15 (three enhanced phases), and 29 (all phases), respectively. For the single-phase model, the delayed-phase model using the logistic regression (LR) algorithm showed the best prediction performance with AUC, accuracy, sensitivity, specificity, and precision of 0.89, 0.83, 0.80, 0.88, and 0.93, respectively. Two combined-phase models showed better results than the single-phase models. The model of all phases using the LR algorithm showed the best prediction performance with AUC, accuracy, sensitivity, specificity, and precision of 0.96, 0.88, 0.90, 0.93, and 0.92, respectively. CONCLUSION Radiomic models based on preoperative CT images can differentiate pancreatobiliary-type from intestinal-type periampullary carcinomas, in particular, the model of all phases using the LR algorithm.
Collapse
|
6
|
Abstract
Smad4 or DPC4 belongs to a family of signal transduction proteins that are phosphorylated and activated by transmembrane serine-threonine receptor kinases in response to transforming growth factor beta (TGF-β) signaling via several pathways. The gene acts as a tumour suppressor gene and inactivation of smad4/DPC4 is best recognised in pancreatic cancer. However, smad4/DPC4 is also mutated in other conditions and cancers such as juvenile polyposis syndrome with and without hereditary haemorrhagic telangiectasia, colorectal and prostate cancers.Immunohistochemistry for smad4/DPC4 protein is most useful in separating benign/reactive conditions from pancreatic cancer in needle/core biopsies. In normal and reactive states, the protein is localised to the cytoplasm and nucleus, while the protein is lost in high-grade pancreatic intraepithelial neoplasia/carcinoma in situ and pancreatic cancer.
Collapse
Affiliation(s)
- Aoife J McCarthy
- Laboratory Medicine Program, Department of Anatomical Pathology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Runjan Chetty
- Laboratory Medicine Program, Department of Anatomical Pathology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|