1
|
Taheri M, Shirvani-Farsani Z, Harsij A, Fathi M, Khalilian S, Ghafouri-Fard S, Baniahmad A. A review on the role of KCNQ1OT1 lncRNA in human disorders. Pathol Res Pract 2024; 255:155188. [PMID: 38330620 DOI: 10.1016/j.prp.2024.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
KCNQ1OT1 is an lncRNA located within KCNQ1 gene on chromosome 11p15.5. This lncRNAs participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions. In most types of cancers, KCNQ1OT1 is regarded as an oncogene. In a wide array of cancers, high level of KCNQ1OT1 is associated with lower overall survival time. This lncRNA has been found to adsorb a variety of miRNAs, namely miR-15a, miR-211-5p, hsa-miR-107, miR-145, miR-34a, miR-204-5p, miR-129-5p, miR-372-3p, miR-491-5p, miR-153, miR-185-5p, miR-124-3p, miR-211-5p, miR-149, miR-148a-3p, miR-140-5p, miR-125b-5p, miR-9, miR-329-3p, miR-760, miR-296-5p, miR-3666 and miR-129-5p, thus regulating the downstream targets of these miRNAs. In this manuscript, our attention is on this lncRNA and its biomolecular roles in human cancers and other disorders. KCNQ1OT1 plays significant roles in the tumorigenesis and may function as a prospective target for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Khalilian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
3
|
He SL, Chen YL, Chen QH, Tian Q, Yi SJ. LncRNA KCNQ1OT1 promotes the metastasis of ovarian cancer by increasing the methylation of EIF2B5 promoter. Mol Med 2022; 28:112. [PMID: 36100884 PMCID: PMC9469603 DOI: 10.1186/s10020-022-00521-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have emerged as regulators of human malignancies, including ovarian cancer (OC). LncRNA KCNQ1OT1 could promote OC progression, and EIF2B5 was associated with development of several tumors. This project was aimed to explore the role of lncRNA KCNQ1OT1 in OC development, as well as the involving action mechanism. Methods Reverse transcription quantitative polymerase chain reaction (RT-qPCR) or Western blotting was employed to determine the expression levels of KCNQ1OT1 and EIF2B5. OC cell proliferation was evaluated by MTT and colony formation assays, and wound healing and Transwell assays were implemented to monitor cell migration and invasion, respectively. The methylation status of EIF2B5 promoter was examined by MS-PCR, to clarify whether the expression of EIF2B5 was decreased. The binding activity of KCNQ1OT1 to methyltransferases DNMT1, DNMT3A and DNMT3B was determined by dual luciferase reporter assay or RIP assay, to explore the potential of KCNQ1OT1 alters the expression of its downstream gene. ChIP assay was carried out to verify the combination between EIF2B5 promoter and above three methyltransferases. Results Expression of lncRNA KCNQ1OT1 was increased in OC tissues and cells. EIF2B5 expression was downregulated in OC, which was inversely correlated with KCNQ1OT1. Knockdown of KCNQ1OT1 inhibited OC cell proliferation and metastasis. KCNQ1OT1 could downregulate EIF2B5 expression by recruiting DNA methyltransferases into EIF2B5 promoter. Furthermore, interference of EIF2B5 expression rescued KCNQ1OT1 depletion-induced inhibitory impact on OC cell proliferation and metastasis. Conclusion Our findings evidenced that lncRNA KCNQ1OT1 aggravated ovarian cancer metastasis by decreasing EIF2B5 expression level, and provided a novel therapeutic strategy for OC. LncRNA KCNQ1OT1 is upregulated, while EIF2B5 is downregulated in OC tissues and cells. Knockdown of KCNQ1OT1 represses OC cell proliferation and metastasis. KCNQ1OT1 decreases EIF2B5 expression by recruiting DNA methyltransferases into EIF2B5 promoter, thereby promoting OC progression.
Collapse
|
4
|
Jusic A, Thomas PB, Wettinger SB, Dogan S, Farrugia R, Gaetano C, Tuna BG, Pinet F, Robinson EL, Tual-Chalot S, Stellos K, Devaux Y. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res Rev 2022; 77:101610. [PMID: 35338919 DOI: 10.1016/j.arr.2022.101610] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.
Collapse
|
5
|
Long Non-Coding RNA KCNQ1OT1 Regulates Protein Kinase CK2 Via miR-760 in Senescence and Calorie Restriction. Int J Mol Sci 2022; 23:ijms23031888. [PMID: 35163809 PMCID: PMC8836653 DOI: 10.3390/ijms23031888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important biological roles. Here, the roles of the lncRNA KCNQ1OT1 in cellular senescence and calorie restriction were determined. KCNQ1OT1 knockdown mediated various senescence markers (increased senescence-associated β-galactosidase staining, the p53-p21Cip1/WAF1 pathway, H3K9 trimethylation, and expression of the senescence-associated secretory phenotype) and reactive oxygen species generation via CK2α downregulation in human cancer HCT116 and MCF-7 cells. Additionally, KCNQ1OT1 was downregulated during replicative senescence, and its silencing induced senescence in human lung fibroblast IMR-90 cells. Additionally, an miR-760 mimic suppressed KCNQ1OT1-mediated CK2α upregulation, indicating that KCNQ1OT1 upregulated CK2α by sponging miR-760. Finally, the KCNQ1OT1–miR-760 axis was involved in both lipopolysaccharide-mediated CK2α reduction and calorie restriction (CR)-mediated CK2α induction in these cells. Therefore, for the first time, this study demonstrates that the KCNQ1OT1–miR-760–CK2α pathway plays essential roles in senescence and CR, thereby suggesting that KCNQ1OT1 is a novel therapeutic target for an alternative treatment that mimics the effects of anti-aging and CR.
Collapse
|
6
|
Li S, Yang P. Relationship between HSPA1A-regulated gene expression and alternative splicing in mouse cardiomyocytes and cardiac hypertrophy. J Thorac Dis 2021; 13:5517-5533. [PMID: 34659818 PMCID: PMC8482330 DOI: 10.21037/jtd-21-1222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Background Cardiac hypertrophy may be classified as either physiological or pathological. Pathological hypertrophy has a complex etiology and is genetically regulated. In this study, we used a mouse model of cardiac hypertrophy to explore the mechanisms of gene regulation, in particular, modulation of the expression of target genes through transcription factor activity, regulation of immune and inflammation-associated genes and regulation of the alternative splicing of transcription factors. Methods Mouse models of pathological cardiac hypertrophy were established by transverse aortic constriction (TAC). We overexpressed HSPA1A in mouse cardiac HL-1 cells. GO and KEGG pathway annotation database was used to analyze all DEGs. Results The expression of HSPA1A differed significantly between TAC + dantrolene vs. sham + dantrolene (Sham was the non-TAC group, and DMSO was the contrast agent), and TAC + DMSO vs. sham + DMSO. The RNA-binding protein Zfp36 was found to be differentially expressed between both TAC + dantrolene vs. sham + dantrolene and TAC + DMSO vs. sham + DMSO. The expression of mki67 and gm5619 was significantly different between TAC + dantrolene and TAC + DMSO. HSPA1A was found to selectively regulate the expression of non-coding RNAs related to cardiac hypertrophy, including Rn7sk and RMRP. The downregulated genes were mainly related to inflammation and the immune response. HSPA1A negatively regulated alternative splicing of Asxl2 and positively regulated alternative splicing of Runx1. Conclusions HSPA1A was closely related to cardiac hypertrophy. Zfp36 was also related to cardiac hypertrophy. Dantrolene may delay cardiac hypertrophy and ventricular remodeling by regulating the expression of the RNA-binding protein genes mki67 and gm5619. HSPA1A positively regulated the expression of the non-coding RNAs RN7SK and RMRP while negatively regulating the expression of inflammation- and immune response-related genes. HSPA1A can play a role in cardiac hypertrophy by regulating the alternative splicing of asxl2 and runx1.
Collapse
Affiliation(s)
- Shuai Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Yang
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Shahzadi SK, Naidoo N, Alsheikh-Ali A, Rizzo M, Rizvi AA, Santos RD, Banerjee Y. Reconnoitering the Role of Long-Noncoding RNAs in Hypertrophic Cardiomyopathy: A Descriptive Review. Int J Mol Sci 2021; 22:ijms22179378. [PMID: 34502285 PMCID: PMC8430576 DOI: 10.3390/ijms22179378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy. It is characterized by an unexplained non-dilated hypertrophy of the left ventricle with a conserved or elevated ejection fraction. It is a genetically heterogeneous disease largely caused by variants of genes encoding for cardiac sarcomere proteins, including MYH7, MYBPC3, ACTC1, TPM1, MYL2, MYL3, TNNI3, and TNNT23. Preclinical evidence indicates that the enhanced calcium sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric variations but may also result from secondary mutation-driven alterations. Long non-coding RNAs (lncRNAs) are a large class of transcripts ≥200 nucleotides in length that do not encode proteins. Compared to coding mRNAs, most lncRNAs are not as well-annotated and their functions are greatly unexplored. Nevertheless, increasing evidence shows that lncRNAs are involved in a variety of biological processes and diseases including HCM. Accumulating evidence has indicated that lncRNAs are dysregulated in HCM, and closely related to sarcomere construction, calcium channeling and homeostasis of mitochondria. In this review, we have summarized the known regulatory and functional roles of lncRNAs in HCM.
Collapse
Affiliation(s)
- Syeda K. Shahzadi
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
| | - Nerissa Naidoo
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Correspondence: (N.N.); (Y.B.); Tel.: +971-4383-8728 (N.N.); +971-4383-8710 (Y.B.)
| | - Alawi Alsheikh-Ali
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Dubai Health Authority, Dubai 66566, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Raul D. Santos
- The Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo 01000, Brazil;
| | - Yajnavalka Banerjee
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Centre of Medical Education, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: (N.N.); (Y.B.); Tel.: +971-4383-8728 (N.N.); +971-4383-8710 (Y.B.)
| |
Collapse
|