1
|
Shi GC, Teng YQ, Zhu JS, Sun JW, Liu C, Zhang YW. ELK4 transcription promotes MSI2-mediated progression of non-small cell lung cancer through the TGF-β/SMAD3 pathway. Kaohsiung J Med Sci 2025; 41:e12952. [PMID: 39969091 DOI: 10.1002/kjm2.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a primary contributor to global cancer-related mortality. Musashi-2 (MSI2), an RNA-binding protein (RBP), is upregulated in specific NSCLC tumor subgroups. The current investigation evaluated the role and underlying mechanism of MSI2 in NSCLC. The expression levels of ELK4, MSI2, SMAD3, p-SMAD3 and TGFβR1 were assessed via RT-qPCR or Western blot. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were used to confirm the interaction between ELK4 and MSI2. The proliferation, migration and invasion of NSCLC cells were determined via MTT, colony formation, and transwell assays, respectively. A xenograft tumor model was established in BALB/c nude mice. Immunohistochemical (IHC) staining was used to test Ki67 expression. We found that MSI2 and ELK4 expression levels were increased in NSCLC tissues and cells. ELK4 depletion suppressed the proliferation, migration and invasion of NSCLC cells. ELK4 acts as a transcription factor and promotes the transcription of MSI2. MSI2 depletion repressed NSCLC cell proliferation, migration and invasion through the TGF-β/SMAD3 pathway. Overexpression of ELK4 reversed the inhibitory effect of MSI2 repression on NSCLC progression. These results confirmed that ELK4 is a direct regulator of MSI2 expression and that MSI2 promotes NSCLC progression through TGF-β/SMAD3 activation, suggesting the potential clinical value of inhibiting MSI2 in NSCLC.
Collapse
Affiliation(s)
- Guo-Cui Shi
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Yu-Qing Teng
- Outpatient Department, The Chinese People's Liberation Army, Hebei Provincial Military Region, Cangzhou, Hebei, China
| | - Jin-Song Zhu
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Jia-Wei Sun
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Cui Liu
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Yi-Wei Zhang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Niu Y, Zhou T, Li Y. Update on the Progress of Musashi-2 in Malignant Tumors. FRONT BIOSCI-LANDMRK 2025; 30:24928. [PMID: 39862069 DOI: 10.31083/fbl24928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 01/27/2025]
Abstract
Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors. In recent years, research on the MSI protein has advanced, and many novel viewpoints and drug resistance attempts have been derived; for example, tumor protein p53 mutations and MSI-binding proteins lead to resistance to protein arginine N-methyltransferase 5-targeted therapy in lymphoma patients. Moreover, the high expression of MSI2 in pancreatic cancer might suppress its development and progression. As a significant member of the MSI family, MSI2 is closely associated with multiple malignant tumors, including hematological disorders, common abdominal tumors, and other tumor types (e.g., glioblastoma, breast cancer). MSI2 is highly expressed in the majority of tumors and is related to a poor disease prognosis. However, its specific expression levels and regulatory mechanisms may differ based on the tumor type. This review summarizes the research progress related to MSI2 in recent years, including its occurrence, migration mechanism, and drug resistance, as well as the prospect of developing tumor immunosuppressants and biomarkers.
Collapse
Affiliation(s)
- Yiting Niu
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Tao Zhou
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Yanjun Li
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Wu T, Yang H, Li J, Fang H, Shi X, Li J, Feng L. Jolkinolide B inhibits the progression of hepatocellular carcinoma by regulating Musashi-2 protein. PLoS One 2024; 19:e0299920. [PMID: 38630658 PMCID: PMC11023458 DOI: 10.1371/journal.pone.0299920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/15/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. However, the HCC treatment is still challenging. Herein, we aimed to reveal the anti-tumor effect of Jolkinolide B in HCC cell lines Huh-7 and SK-Hep-1. The results showed that Jolkinolide B inhibited the migration, invasion, and epithelial-to-mesenchymal transition(EMT) of HCC cells. In addition, Jolkinolide B induced HCC cell apoptosis by upregulating Bax and downregulating BCL-2 expressions. Furthermore, we demonstrated that Jolkinolide B inactivated the β-catenin signaling and reduced Musashi-2 expression. Finally, we revealed that Musashi-2 overexpression reversed the Jolkinolide B-induced anti-HCC effect. Overall, we proved that Jolkinolide B is a potential candidate for treating HCC.
Collapse
Affiliation(s)
- Tianchun Wu
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Han Yang
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinjin Li
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongbo Fang
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoyi Shi
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Li
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liushun Feng
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Samart P, Heenatigala Palliyage G, Issaragrisil S, Luanpitpong S, Rojanasakul Y. Musashi-2 in cancer-associated fibroblasts promotes non-small cell lung cancer metastasis through paracrine IL-6-driven epithelial-mesenchymal transition. Cell Biosci 2023; 13:205. [PMID: 37941042 PMCID: PMC10631049 DOI: 10.1186/s13578-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Lung cancer, the most common cause of cancer-related mortality worldwide, is predominantly associated with advanced/metastatic disease. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) in tumor microenvironment is known to be essential for regulating tumor progression and metastasis, but the underlying mechanisms, particularly the role of RNA-binding protein Musashi-2 (MSI2) in CAFs in promoting non-small cell lung cancer (NSCLC) invasiveness and metastatic spread, remain obscure. METHODS Genomic and proteomic database analyses were performed to evaluate the potential clinical significance of MSI2 in NSCLC tumor and stromal clinical specimens. Molecular approaches were used to modify MSI2 in CAFs and determine its functional role in NSCLC cell motility in vitro using 2D and 3D models, and in metastasis in a xenograft mouse model using live-cell imaging. RESULTS MSI2, both gene and protein, is upregulated in NSCLC tissues and is associated with poor prognosis and high metastatic risk in patients. Interestingly, MSI2 is also upregulated in NSCLC stroma and activated fibroblasts, including CAFs. Depletion of MSI2 in CAFs by CRISPR-Cas9 strongly inhibits NSCLC cell migration and invasion in vitro, and attenuates local and distant metastatic spread of NSCLC cells in vivo. The crosstalk between CAFs and NSCLC cells occurs via paracrine signaling, which is regulated by MSI2 in CAFs via IL-6. The secreted IL-6 promotes epithelial-mesenchymal transition in NSCLC cells, which drives metastasis. CONCLUSION Our findings reveal for the first time that MSI2 in CAFs is important in CAF-mediated NSCLC cell invasiveness and metastasis via IL-6 paracrine signaling. Therefore, targeting the MSI2/IL-6 axis in CAFs could be effective in combating NSCLC metastasis.
Collapse
Affiliation(s)
- Parinya Samart
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | | | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA.
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
5
|
Wu W, Li J, Dong D, Dou F, Lin Y, Yang X, Zhou Y, Xie J. Prognostic value of MSI2 expression in human malignancies: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2022; 101:e32064. [PMID: 36596017 PMCID: PMC9803470 DOI: 10.1097/md.0000000000032064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The prognostic value of Musashi-2 (MSI2) in human malignancies remains controversial. We thus conducted this meta-analysis to evaluate the association between MSI2 expression and prognosis of patients with malignancies. MATERIALS AND METHODS We searched EMBASE, PubMed and Web of Science up to June 2021 for eligible studies. Hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated to assess the prognostic value of MSI2 expression. Odds ratios (ORs) with 95% CIs were calculated to evaluate the association between MSI2 expression and clinicopathological traits. RESULTS Sixteen studies involving 2203 patients were finally included in this meta-analysis. We found that high MSI2 expression might predict unfavorable OS (HR = 1.85, 95% CI: 1.62-2.10, P < .0001) and DFS/RFS (HR = 2.19, 95% CI: 1.87-2.57, P < .0001). Besides, the pooled results indicated that increased MSI2 expression correlated with large tumor size, poor tumor differentiation, positive lymph node metastasis and advanced tumor stage. CONCLUSIONS Taken together, our data implies that MSI2 overexpression is related to poor survival outcomes in patients with malignancy. Therefore, MSI2 may serve as a novel prognostic biomarker and therapeutic target of malignancies. However, large-scale prospective and homogeneous investigations should be conducted in the future to further validate our findings.
Collapse
Affiliation(s)
- Wei Wu
- Anorectum Surgical Department, YunNan Provimcial Hospital of Traditional Chinese Medicine, YunNan, China
- Department of Gastrointestinal Surgery, 3201 Hospital of Xi’an Jiao Tong University Health Science Center, Hanzhong, Shaanxi, China
- *Correspondence: Wei Wu, Anorectum Surgical Department, YunNan Provimcial Hospital of Traditional Chinese Medicine, YunNan, China; Department of Gastrointestinal Surgery, 3201 Hospital of Xi’an Jiao Tong University Health Science Center, Hanzhong 723000, Shaanxi, China and Jun Xie, Anorectum Surgical Department, YunNan Provimcial Hospital of Traditongnal Chinese Medicine, YunNan, China (e-mail: and )
| | - Jialin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dejia Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fafu Dou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yong Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoye Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Xie
- Anorectum Surgical Department, YunNan Provimcial Hospital of Traditional Chinese Medicine, YunNan, China
- *Correspondence: Wei Wu, Anorectum Surgical Department, YunNan Provimcial Hospital of Traditional Chinese Medicine, YunNan, China; Department of Gastrointestinal Surgery, 3201 Hospital of Xi’an Jiao Tong University Health Science Center, Hanzhong 723000, Shaanxi, China and Jun Xie, Anorectum Surgical Department, YunNan Provimcial Hospital of Traditongnal Chinese Medicine, YunNan, China (e-mail: and )
| |
Collapse
|
6
|
Jiang L, Xue S, Xu J, Fu X, Wei J, Zhang C. Prognostic value of Musashi 2 (MSI2) in cancer patients: A systematic review and meta-analysis. Front Oncol 2022; 12:969632. [PMID: 36530989 PMCID: PMC9751961 DOI: 10.3389/fonc.2022.969632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2023] Open
Abstract
Musashi 2 (MSI2) is an RNA-binding protein that regulates mRNA translation of numerous intracellular targets and plays an important role in the development of cancer. However, the prognostic value of MSI2 in various cancers remains controversial. Herein, we conducted this meta-analysis including 21 studies with 2640 patients searched from PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure databases, and WanFang databases to accurately assess the prognostic significance of MSI2 in various cancers. Our results indicated that high MSI2 expression was significantly related to poor overall survival (HR = 1.84, 95% CI: 1.66-2.05, P < 0.001) and disease-free survival (HR = 1.73, 95% CI: 1.35-2.22, P < 0.001). In addition, MSI2 positive expression was associated with certain phenotypes of tumor aggressiveness, such as clinical stage, depth of invasion, lymph node metastasis, liver metastasis and tumor size. In conclusion, elevated MSI2 expression is closely correlated with poor prognosis in various cancers, and may serve as a potential molecular target for cancer patients.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Anesthesiology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiaoyang Fu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jing Wei
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
7
|
[Advances in research of Musashi2 in solid tumors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:448-456. [PMID: 35426812 PMCID: PMC9010998 DOI: 10.12122/j.issn.1673-4254.2022.03.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RNA binding protein (RBP) plays a key role in gene regulation and participate in RNA translation, modification, splicing, transport and other important biological processes. Studies have shown that abnormal expression of RBP is associated with a variety of diseases. The Musashi (Msi) family of mammals is an evolutionarily conserved and powerful RBP, whose members Msi1 and Msi2 play important roles in the regulation of stem cell activity and tumor development. The Msi family members regulate a variety of biological processes by binding and regulating mRNA translation, stability and downstream cell signaling pathways, and among them, Msi2 is closely related to embryonic growth and development, maintenance of tumor stem cells and development of hematological tumors. Accumulating evidence has shown that Msi2 also plays a crucial role in the development of solid tumors, mainly by affecting the proliferation, invasion, metastasis and drug resistance of tumors, involving Wnt/β-catenin, TGF-β/SMAD3, Akt/mTOR, JAK/STAT, Numb and their related signaling pathways (Notch, p53, and Hedgehog pathway). Preclinical studies of Msi2 gene as a therapeutic target for tumor have achieved preliminary results. This review summarizes the molecular structure, physiological function, role of Msi2 in the development and progression of various solid tumors and the signaling pathways involved.
Collapse
|
8
|
Yang C, Zhu S, Feng W, Chen X. Calponin 3 suppresses proliferation, migration and invasion of non-small cell lung cancer cells. Oncol Lett 2021; 22:634. [PMID: 34267826 PMCID: PMC8258620 DOI: 10.3892/ol.2021.12895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Calponin 3 (CNN3) is known to serve a role in certain types of cancer, such as gastric cancer and colorectal cancer. The present study investigated the clinical significance of CNN3 in non-small cell lung cancer (NSCLC) by evaluating its expression profile and relationship with disease prognosis using the Gene Expression Omnibus repository, Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Kaplan-Meier plotter analysis. CNN3 mRNA expression was measured using reverse transcription-quantitative PCR, while the protein expression level was measured using western blot analysis. Cell proliferation, cell cycle and apoptosis, and migration and invasion were analyzed using MTS assay, flow cytometry and Transwell assays, respectively. These results revealed that CNN3 mRNA expression was downregulated in NSCLC tissues compared with that in normal tissues. Additionally, CNN3 expression had a high diagnostic value based on the GSE2514 dataset and the data from The Cancer Genome Atlas and the Genotype Tissue Expression database, whereas it had a low diagnostic value based on the GSE10072 dataset. Furthermore, CNN3 expression was associated with survival in patients with lung adenocarcinoma (LUAD), whereas it was not associated with survival in patients with lung squamous cell carcinoma (LUSC) according to the Kaplan-Meier plotter results. According to the data from GEPIA2, and the GSE72094, GSE41271 and GSE31210 datasets, CNN3 expression was not associated with the prognosis of patients with LUAD and LUSC. The mRNA and protein expression levels of CNN3 were lower in two NSCLC cell lines (A549 and SK-MES-1) than in a human bronchial epithelial cell line (BEAS-2B). CNN3 overexpression suppressed cell proliferation, migration and invasion, induced G1-phase arrest, promoted apoptosis and suppressed PI3K/AKT signaling pathway activation in the NSCLC cell lines, whereas CNN3 overexpression had no effect on cell morphology. In conclusion, CNN3 suppressed the proliferation and metastasis of NSCLC cells by downregulating the PI3K/AKT signaling pathway, making it a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Chenglin Yang
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shiping Zhu
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Weifeng Feng
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xuexin Chen
- Department of Respiratory and Critical Care Medicine, The General Hospital of Yima Coal Industry Group Co. Ltd., Yima, Henan 472300, P.R. China
| |
Collapse
|