1
|
Chen S, Du T, Zhang H, Zhang Y, Qiao A. Advances in studies on tracheal stent design addressing the related complications. Mater Today Bio 2024; 29:101263. [PMID: 39399242 PMCID: PMC11467681 DOI: 10.1016/j.mtbio.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Tracheal stents can be used to quickly reconstruct the airway and relieve symptoms of dyspnea in patients with tracheal stenosis. However, existing tracheal stents lead to complications such as granulation tissue formation, difficulty in removal, persistent growth of malignant tumors, stent migration, and mucus plugging. In this article, we reviewed the main methods used to reduce complications associated with tracheal stent design. Drug-eluting stents can inhibit granulation tissue formation and prevent infection and local chemotherapy. The biodegradable stent can support the trachea for some time, maintain tracheal patency, and degrade gradually, which avoids removing or replacing the stent. Radioactive stents loaded with I125 have good potential for inhibiting the persistent growth of malignant tumors. Three-dimensional printing technology enables the manufacturing of patient-specific stents, which increases the degree of matching between the complex tracheal anatomy and the stent, thus providing a new solution for stent migration caused by structural mismatch. Minimizing the barrier of the stent to mucociliary clearance, providing an anti-fouling coating, and culturing respiratory epithelial cells on the surface of the stent are the main methods used to reduce mucus plugging. We also proposed future research directions for tracheal stents to guide the design and manufacture of ideal tracheal stents.
Collapse
Affiliation(s)
- Shiliang Chen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, China
| | - Tianming Du
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, China
| | - Hanbing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, China
| | - Yanping Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, China
| | - Aike Qiao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Khalid T, Soriano L, Lemoine M, Cryan SA, O’Brien FJ, O’Leary C. Development of tissue-engineered tracheal scaffold with refined mechanical properties and vascularisation for tracheal regeneration. Front Bioeng Biotechnol 2023; 11:1187500. [PMID: 37346796 PMCID: PMC10281188 DOI: 10.3389/fbioe.2023.1187500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction: Attempted tracheal replacement efforts thus far have had very little success. Major limiting factors have been the inability to efficiently re-vascularise and mimic the mechanical properties of native tissue. The major objective of this study was to optimise a previously developed collagen-hyaluronic acid scaffold (CHyA-B), which has shown to facilitate the growth of respiratory cells in distinct regions, as a potential tracheal replacement device. Methods: A biodegradable thermoplastic polymer was 3D-printed into different designs and underwent multi-modal mechanical assessment. The 3D-printed constructs were incorporated into the CHyA-B scaffolds and subjected to in vitro and ex vivo vascularisation. Results: The polymeric backbone provided sufficient strength to the CHyA-B scaffold, with yield loads of 1.31-5.17 N/mm and flexural moduli of 0.13-0.26 MPa. Angiogenic growth factor release (VEGF and bFGF) and angiogenic gene upregulation (KDR, TEK-2 and ANG-1) was detected in composite scaffolds and remained sustainable up to 14 days. Confocal microscopy and histological sectioning confirmed the presence of infiltrating blood vessel throughout composite scaffolds both in vitro and ex vivo. Discussion: By addressing both the mechanical and physiological requirements of tracheal scaffolds, this work has begun to pave the way for a new therapeutic option for large tracheal defects.
Collapse
Affiliation(s)
- Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
| | - Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Centre for Research in Biomedical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - Mark Lemoine
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
- Centre for Research in Biomedical Devices (CÚRAM), NUI Galway, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
- Centre for Research in Biomedical Devices (CÚRAM), NUI Galway, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Kandi R, Sachdeva K, Choudhury SD, Pandey PM, Mohanty S. A facile 3D bio-fabrication of customized tubular scaffolds using solvent-based extrusion printing for tissue-engineered tracheal grafts. J Biomed Mater Res A 2023; 111:278-293. [PMID: 36210769 DOI: 10.1002/jbm.a.37458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Tracheal implantation remains a major therapeutic challenge due to the unavailability of donors and the lack of biomimetic tubular grafts. Fabrication of biomimetic tracheal scaffolds of suitable materials with matched rigidity, enhanced flexibility and biocompatibility has been a major challenge in the field of tracheal reconstruction. In this study, customized tubular grafts made up of FDA-approved polycaprolactone ( PCL ) and polyurethane ( PU ) were fabricated using a novel solvent-based extrusion 3D printing. The printed scaffolds were investigated by various physical, thermal, and mechanical characterizations such as contact angle measurement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), radial compression, longitudinal compression, and cyclic radial compression. In this study, the native goat trachea was used as a reference for the fabrication of different types of scaffolds (cylindrical, bellow-shaped, and spiral-shaped). The mechanical properties of the goat trachea were also compared to find suitable formulations of PCL / PU . Spiral-shaped scaffolds were found to be an ideal shape based on longitudinal compression and torsion load maintaining clear patency. To check the long-term implantation, in vitro degradation test was performed for all the 3D printed scaffolds and it was found that blending of PU with PCL reduced the degradation behavior. The printed scaffolds were further evaluated for biocompatibility assay, live/dead assay, and cell adhesion assay using bone marrow-derived human mesenchymal stem cells (hMSCs). From biomechanical and biological assessments, PCL 70 / PU 30 of spiral-shaped scaffolds could be a suitable candidate for the development of tracheal regenerative applications.
Collapse
Affiliation(s)
- Rudranarayan Kandi
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Kunj Sachdeva
- Stem Cell Facility, DBT-Centre of Excellence for Stem cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Saumitra Dey Choudhury
- Confocal Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Pulak Mohan Pandey
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Bundelkhand Institute of Engineering & Technology, Jhansi, Uttar Pradesh, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem cell Research, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Heise RL. Computational, Ex Vivo, and Tissue Engineering Techniques for Modeling Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:107-120. [PMID: 37195528 DOI: 10.1007/978-3-031-26625-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The large airways are a critical component of the respiratory tree serving both an immunoprotective role and a physiological role for ventilation. The physiological role of the large airways is to move a large amount of air to and from the gas exchange surfaces of the alveoli. This air becomes divided along the respiratory tree as it moves from the large airways to smaller airways, bronchioles, and alveoli. The large airways are incredibly important from an immunoprotective role as the large airways are an early line of defense against inhaled particles, bacteria, and viruses. The key immunoprotective feature of the large airways is mucus production and mucociliary clearance mechanism. Each of these key features of the lung is important from both a basic physiology perspective and an engineering perspective for regenerative medicine. In this chapter, we will cover the large airways from an engineering perspective to highlight existing models of the large airways as well as future directions for modeling and repair.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Cao A, Kaye R, Goldstein T, Grande DA, Zeltsman D, Smith LP. In response to compression property of trachea: A key mechanical property for artificial trachea graft. Am J Otolaryngol 2022; 43:103412. [PMID: 35210112 DOI: 10.1016/j.amjoto.2022.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Angela Cao
- Department of Otolaryngology-Head and Neck Surgery, Albert Einstein School of Medicine/Montefiore Medical Center, Bronx, NY, United States of America
| | - Rachel Kaye
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ, United States of America.
| | - Todd Goldstein
- The Feinstein Institute for Medical Research, Manhasset, NY, United States of America; The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States of America
| | - Daniel A Grande
- The Feinstein Institute for Medical Research, Manhasset, NY, United States of America; The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States of America
| | - David Zeltsman
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States of America; Division of Thoracic Surgery, Northwell Health System, New Hyde Park, NY, United States of America
| | - Lee P Smith
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States of America; Division of Pediatric Otolaryngology, Steven and Alexandra Cohen Children's Medical Center, New Hyde Park, NY, United States of America
| |
Collapse
|