1
|
Jiang Y, Xu SH, Han L, Lu N, Huang S, Wang L. Accuracy of dual-contrast gastrointestinal ultrasonography in predicting lymph node metastasis in older adults with gastric cancer. World J Gastrointest Oncol 2025; 17:104194. [DOI: 10.4251/wjgo.v17.i5.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/30/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gastrointestinal dual-contrast ultrasonography (DCUS) is characterized by its high resolution, sensitivity, and specificity.
AIM To determine the accuracy of DCUS in predicting lymph node metastasis in middle-aged and elderly patients with gastric cancer (GC).
METHODS A total of 100 middle-aged and elderly patients with GC admitted to the Fourth Affiliated Hospital of Soochow University (Dushu Lake Hospital, Suzhou, China) between April 2022 and April 2024 were selected. The baseline data and lymph node metastasis status were collected. DCUS combined with intravenous contrast technology was used to calculate the enhancement time (ET), time to peak (TTP), and slope of the ascending branch wash-in rate (WIR). These indicators were used in assessing lymph node metastasis in patients with GC.
RESULTS Among 100 middle-aged and elderly patients with GC, 35 (35.00%) had lymph node metastases. GC patients with lymph node metastasis had a higher proportion of stage II TNM classification and higher WIR values than those without lymph node metastasis. The ET and TTP values were lower in patients with lymph node metastases, and all differences were statistically significant (P < 0.05). The area under the curve values for ET, TTP, WIR, and combined diagnosis of GC lymph node metastasis using DCUS were all > 0.7. Optimal assessment was achieved when the cutoff values for ET, TTP, and WIR were set at 16.32 seconds, 10.67 seconds, and 7.02, respectively.
CONCLUSION DCUS-mediated assessment of ET, TTP, and WIR can effectively predict and evaluate lymph node metastasis status in patients with GC, with higher sensitivity when used in combination.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Ultrasound, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou 215000, Jiangsu Province, China
| | - Shao-Hua Xu
- Department of Ultrasound, Shanghai Jiao Tong University School of Medicine Suzhou Jiulong Hospital, Suzhou 215000, Jiangsu Province, China
| | - Li Han
- Department of Ultrasound, Shanghai Jiao Tong University School of Medicine Suzhou Jiulong Hospital, Suzhou 215000, Jiangsu Province, China
| | - Na Lu
- Department of Ultrasound, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou 215000, Jiangsu Province, China
| | - Shuai Huang
- Department of Ultrasound, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou 215000, Jiangsu Province, China
| | - Lei Wang
- Department of Ultrasound, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou 215000, Jiangsu Province, China
| |
Collapse
|
2
|
Kotoulas SC, Spyratos D, Porpodis K, Domvri K, Boutou A, Kaimakamis E, Mouratidou C, Alevroudis I, Dourliou V, Tsakiri K, Sakkou A, Marneri A, Angeloudi E, Papagiouvanni I, Michailidou A, Malandris K, Mourelatos C, Tsantos A, Pataka A. A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2025; 17:882. [PMID: 40075729 PMCID: PMC11898928 DOI: 10.3390/cancers17050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5-10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities-such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans-but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.
Collapse
Affiliation(s)
- Serafeim-Chrysovalantis Kotoulas
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Dionysios Spyratos
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Konstantinos Porpodis
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Kalliopi Domvri
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Afroditi Boutou
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Evangelos Kaimakamis
- 1st ICU, Medical Informatics Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| | - Christina Mouratidou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioannis Alevroudis
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Vasiliki Dourliou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Kalliopi Tsakiri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Agni Sakkou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Alexandra Marneri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Elena Angeloudi
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioanna Papagiouvanni
- 4th Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Anastasia Michailidou
- 2nd Propaedeutic Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantinos Malandris
- 2nd Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Constantinos Mourelatos
- Biology and Genetics Laboratory, Aristotle’s University of Thessaloniki, 54624 Thessaloniki, Greece;
| | - Alexandros Tsantos
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Athanasia Pataka
- Respiratory Failure Clinic and Sleep Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| |
Collapse
|
3
|
Chen L, Chen B, Zhao Z, Shen L. Using artificial intelligence based imaging to predict lymph node metastasis in non-small cell lung cancer: a systematic review and meta-analysis. Quant Imaging Med Surg 2024; 14:7496-7512. [PMID: 39429617 PMCID: PMC11485379 DOI: 10.21037/qims-24-664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024]
Abstract
Background Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the most-deadly malignancies worldwide. Lung cancer has a worse 5-year survival rate than many primary malignancies. Thus, the early detection and prognosis prediction of lung cancer are crucial. The early detection and prognosis prediction of lung cancer have improved with the widespread use of artificial intelligence (AI) technologies. This meta-analysis examined the accuracy and efficacy of AI-based models in predicting lymph node metastasis (LNM) in NSCLC patients using imaging data. Our findings could help clinicians predict patient prognosis and select alternative therapies. Methods We searched the PubMed, Web of Science, Cochrane Library, and Embase databases for relevant articles published up to January 31, 2024. Two reviewers individually evaluated all the retrieved articles to assess their eligibility for inclusion in the meta-analysis. The systematic assessment and meta-analysis comprised articles that satisfied the inclusion criteria (e.g., randomized or non-randomized trials, and observational studies) and exclusion criteria (e.g., articles not published in English), and provided data for the quantitative synthesis. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The pooled sensitivity, specificity, and area under the curve (AUC) were used to evaluate the ability of AI-based imaging models to predict LNM in NSCLC patients. Sources of heterogeneity were investigated using meta-regression. Covariates, including country, sample size, imaging modality, model validation technique, and model algorithm, were examined in the subgroup analysis. Results The final meta-analysis comprised 11 retrospective studies of 6,088 NSCLC patients, of whom 1,483 had LNM. The pooled sensitivity, specificity, and AUC of the AI-based imaging model for predicting LNM in NSCLC patients were 0.87 [95% confidence interval (CI): 0.80-0.91], 0.85 (95% CI: 0.78-0.89), and 0.92 (95% CI: 0.90-0.94). Based on the QUADAS-2 results, a risk of bias was detected in the patient selection and diagnostic tests of the included articles. However, the quality of the included articles was generally acceptable. The pooled sensitivity and specificity were heterogeneous (I2>75%). The meta-regression and subgroup analyses showed that imaging modality [computed tomography (CT) or positron emission tomography (PET)/CT], and the neural network method model design significantly affected heterogeneity of this study. Models employing sample size data from a single center and the least absolute shrinkage and selection operator (LASSO) method had greater sensitivity than other techniques. Using the Deek' s funnel plot, no publishing bias was found. The results of the sensitivity analysis showed that deleting each article one by one did not change the findings. Conclusions Imaging data models based on AI algorithms have good diagnostic accuracy in predicting LNM in patients with NSCLC and could be applied in clinical settings.
Collapse
Affiliation(s)
- Lujiao Chen
- Postgraduate Affairs Department, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Bo Chen
- Postgraduate Affairs Department, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
4
|
Ye G, Zhang C, Zhuang Y, Liu H, Song E, Li K, Liao Y. An advanced nomogram model using deep learning radiomics and clinical data for predicting occult lymph node metastasis in lung adenocarcinoma. Transl Oncol 2024; 44:101922. [PMID: 38554572 PMCID: PMC10998193 DOI: 10.1016/j.tranon.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
PURPOSE To evaluate the effectiveness of deep learning radiomics nomogram in distinguishing the occult lymph node metastasis (OLNM) status in clinical stage IA lung adenocarcinoma. METHODS A cohort of 473 cases of lung adenocarcinomas from two hospitals was included, with 404 cases allocated to the training cohort and 69 cases to the testing cohort. Clinical characteristics and semantic features were collected, and radiomics features were extracted from the computed tomography (CT) images. Additionally, deep transfer learning (DTL) features were generated using RseNet50. Predictive models were developed using the logistic regression (LR) machine learning algorithm. Moreover, gene analysis was conducted on RNA sequencing data from 14 patients to explore the underlying biological basis of deep learning radiomics scores. RESULT The training and testing cohorts achieved AUC values of 0.826 and 0.775 for the clinical model, 0.865 and 0.801 for the radiomics model, 0.927 and 0.885 for the DTL-radiomics model, and 0.928 and 0.898 for the nomogram model. The nomogram model demonstrated superiority over the clinical model. The decision curve analysis (DCA) revealed a net benefit in predicting OLNM for all models. The investigation into the biological basis of deep learning radiomics scores identified an association between high scores and pathways related to tumor proliferation and immune cell infiltration in the microenvironment. CONCLUSIONS The nomogram model, incorporating clinical-semantic features, radiomics, and DTL features, exhibited promising performance in predicting OLNM. It has the potential to provide valuable information for non-invasive lymph node staging and individualized therapeutic approaches.
Collapse
Affiliation(s)
- Guanchao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhou Zhuang
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Enmin Song
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kuo Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Wang Y, He Y, Duan X, Pang H, Zhou P. Construction of diagnostic and prognostic models based on gene signatures of nasopharyngeal carcinoma by machine learning methods. Transl Cancer Res 2023; 12:1254-1269. [PMID: 37304552 PMCID: PMC10248568 DOI: 10.21037/tcr-22-2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/29/2023] [Indexed: 06/13/2023]
Abstract
Background Diagnostic models based on gene signatures of nasopharyngeal carcinoma (NPC) were constructed by random forest (RF) and artificial neural network (ANN) algorithms. Least absolute shrinkage and selection operator (Lasso)-Cox regression was used to select and build prognostic models based on gene signatures. This study contributes to the early diagnosis and treatment, prognosis, and molecular mechanisms associated with NPC. Methods Two gene expression datasets were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) associated with NPC were identified by gene expression differential analysis. Subsequently, significant DEGs were identified by a RF algorithm. ANN were used to construct a diagnostic model for NPC. The performance of the diagnostic model was evaluated by area under the curve (AUC) values using a validation set. Lasso-Cox regression examined gene signatures associated with prognosis. Overall survival (OS) and disease-free survival (DFS) prediction models were constructed and validated from The Cancer Genome Atlas (TCGA) database and the International Cancer Genome Consortium (ICGC) database. Results A total of 582 DEGs associated with NPC were identified, and 14 significant genes were identified by the RF algorithm. A diagnostic model for NPC was successfully constructed using ANN, and the validity of the model was confirmed on the training set AUC =0.947 [95% confidence interval (CI): 0.911-0.969] and the validation set AUC =0.864 (95% CI: 0.828-0.901). The 24-gene signatures associated with prognosis were identified by Lasso-Cox regression, and prediction models for OS and DFS of NPC were constructed on the training set. Finally, the ability of the model was validated on the validation set. Conclusions Several potential gene signatures associated with NPC were identified, and a high-performance predictive model for early diagnosis of NPC and a prognostic prediction model with robust performance were successfully developed. The results of this study provide valuable references for early diagnosis, screening, treatment and molecular mechanism research of NPC in the future.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongcheng He
- College of veterinary medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaodong Duan
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|