1
|
Ke B, Zhong H, Gong Y, Chen X, Yan C, Shi L. LINC00323 knockdown suppresses the proliferation, migration, and vascular mimicry of non-small cell lung cancer cells by promoting ubiquitinated degradation of AKAP1. Noncoding RNA Res 2025; 11:131-140. [PMID: 39802612 PMCID: PMC11720444 DOI: 10.1016/j.ncrna.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Background LINC00323, a new long noncoding RNA, is aberrantly expressed in several cancers. However, the expression, function, and mechanism of LINC00323 in non-small cell lung cancer (NSCLC) are unclear. Methods In the present study, LINC00323, VEGFA, microvessel density (MVD), and AKAP1 levels were confirmed in NSCLC tissues. Cell proliferation, migration, and vascular mimicry (VM) were examined to assess the effects of LINC00323 and AKAP1 on NSCLC cells. In addition, the interaction between LINC00323 and AKAP1 was verified by RNA pull-down, LC-MS/MS and RNA immunoprecipitation. The ubiquitination level of AKAP1 was also confirmed through coimmunoprecipitation, cycloheximide (CHX) chase, and ubiquitination assays in vitro. Results Our results revealed that LINC00323 was upregulated in NSCLC tissues and was positively correlated with metastasis, poor prognosis, VEGFA expression, elevated MVD, and AKAP1 expression. Functionally, LINC00323 or AKAP1 knockdown suppressed the proliferation, migration, and VM of NSCLC cells. Mechanistically, LINC00323 could target AKAP1, and LINC00323 knockdown accelerated ubiquitination-mediated AKAP1 protein degradation. Moreover, LINC00323 silencing suppressed NSCLC cell progression by downregulating AKAP1. Conclusions LINC00323 knockdown prevents NSCLC cell proliferation, migration, and VM formation by targeting AKAP1, indicating that LINC00323 and AKAP1 might be biological targets for NSCLC treatment.
Collapse
Affiliation(s)
- Bin Ke
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Hai Zhong
- Department of Thoracic Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yuxin Gong
- Department of Respiratory Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiaofei Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Chenxin Yan
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Lin Shi
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| |
Collapse
|
2
|
Muge Q, Qing Y, Bao W, Bao X, Gaowa A, Chen L. LncRNA CCAT1 decreases the sensitivity to doxorubicin in lung cancer cells by regulating miR-181a/CPEB2 axis. Med Oncol 2025; 42:109. [PMID: 40089944 DOI: 10.1007/s12032-025-02668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Recently, long non-coding RNAs have gained an increasing amount of attention in treating lung cancer. However, a full understanding of how CCAT1 lncRNA works against proliferation is not yet available. Therefore, we assess the impact of CCAT1 on the lung cancer cell proliferation, apoptosis, and doxorubicin (DOX) sensitivity, and the involvement of miR-181a/CPEB2 pathway. For this purpose, lung cancer A549 cells were exposed to siRNA against CCAT1 and DOX and cell viability were measured by MTT assay. ELISA was used to evaluate cell apoptosis. The protein and mRNA expression levels of apoptotic markers, miR-181a and CPEB2 were measured by western blot and qRT-PCR. Knock-downing CCAT1 inhibited the cell viability of A549 cells. In addition, si-CCAT1 treatment increased apoptosis in both cell lines via modulating the anti- and pro-apoptotic markers. Si-CCAT1 increased the levels miR-181a and decreased CPEB2 in A549 cells. In conclusion, our study has provided strong evidence that lncRNA CCAT1 decreased the sensitivity to doxorubicin in lung cancer cells by regulating the miR-181a/CPEB2 axis.
Collapse
Affiliation(s)
- Qi Muge
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Yu Qing
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Wenshan Bao
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Xiangrong Bao
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Arong Gaowa
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Lanying Chen
- National Engineering Research Center of Traditional Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
3
|
Zhen J, Sun L, Ji L, Zhou S, Cui Y, Li Z. EDN1 facilitates cisplatin resistance of non-small cell lung cancer cells by regulating the TNF signaling pathway. World J Surg Oncol 2025; 23:71. [PMID: 40025550 PMCID: PMC11871734 DOI: 10.1186/s12957-025-03692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Cisplatin (DDP) is a commonly utilized chemotherapeutic agent. Nevertheless, the development of resistance to DDP significantly diminishes the effectiveness of DDP-based chemotherapy in patients with non-small cell lung cancer (NSCLC). In this study, we investigated the impact of endothelin 1 (EDN1) on the resistance to DDP in NSCLC. METHODS The proliferation, invasion, and migration of NSCLC cells were detected by cell counting kit-8 and Transwell migration and invasion assays. ELISA was performed to analyze the inflammatory cytokines concentrations. The related protein levels of tumor necrosis factor (TNF) signaling pathway were analyzed by Western blot. Besides, a xenograft tumor mice model was established to explore the role of EDN1 in vivo. RESULTS The results showed that DDP-resistance upregulated EDN1 expression, cell viability, invasion, migration, and inflammation in NSCLC cells, while the results were reversed after EDN1 inhibition. EDN1 affected DDP-resistance of NSCLC by regulating TNF signaling pathway. Overexpression of TNF receptor-1 (TNFR1) reversed the decreased cell viability, invasion, migration, and inflammation induced by silencing EDN1 in A549/DDP cells. Moreover, silencing EDN1 inhibited tumor growth and the protein levels of EDN1 and TNFR1. CONCLUSION EDN1 promoted DDP resistance in NSCLC cells through the modulation of the TNF signaling pathway, suggesting a potential therapeutic intervention strategy for NSCLC.
Collapse
Affiliation(s)
- Jie Zhen
- Department of Thoracic Surgery, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Long Sun
- Department of Pathology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Li Ji
- Department of Blood Transfusion, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Shaochong Zhou
- Department of Thoracic Surgery, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Yijin Cui
- Department of Neurology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Zhenwei Li
- Department of Operating Room, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, No.753, Jianghai Middle Road, Qidong, Jiangsu, 226200, China.
| |
Collapse
|
4
|
Ao S, Liang L, Peng L, Yang R, Chen Z, Deng T. Identification and validation of an m5C-related lncRNA signature for predicting prognosis and immune response in clear cell renal cell carcinoma. Discov Oncol 2025; 16:227. [PMID: 39987537 PMCID: PMC11847763 DOI: 10.1007/s12672-025-01987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
This study investigated whether m5C-related Long non-coding RNAs (lncRNAs) can predict clear cell renal cell carcinoma (ccRCC) patient prognosis. Co-expression and Cox regression analyses identified 9 prognostic lncRNAs, which were closely associated with tumor immune characteristics and immune escape. The model also predicted the sensitivity of drugs, including Entinostat, SB216763, and Sapitinib. In vitro experiments showed that GNG12-AS1 inhibited ccRCC cell proliferation and migration by reducing the activity of the ERK/GSK-3β/β-catenin pathway. Overall, these findings suggest that the 9 m5C-related lncRNAs can accurately predict ccRCC patient prognosis, providing potential applications for clinical and immunotherapy approaches. GNG12-AS1 emerges as a promising prognostic biomarker for predicting survival outcomes in ccRCC, potentially influencing cell migration through the activation of the ERK/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shan Ao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leqi Liang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Peng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Riwei Yang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zugen Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Chen Z, Yao Y, Gao J. LncRNA ZEB1-AS1 promotes the proliferation and migration of non-small cell lung cancer by activating epithelial-mesenchymal transition with STAT3. Transl Cancer Res 2025; 14:584-594. [PMID: 39974382 PMCID: PMC11833408 DOI: 10.21037/tcr-2024-2276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Background Lung cancer is the most common cause of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) is the main type of lung cancer. Long non-coding RNA ZEB1 antisense 1 (lncRNA ZEB1-AS1) is derived from the promoter region of the transcriptional repressor ZEB1. In bladder cancer and glioblastoma, lncRNA ZEB1-AS1 promotes the expression of ZEB1 and cancer progression, and is associated with a poor prognosis. However, its role in NSCLC tumor progression remains unclear. This study aims to investigate its possible role in NSCLC tumor progression. Methods In this study, overexpressed and silenced lncRNA NSCLC cell lines of ZEB1-AS1 were constructed, epithelial-mesenchymal transition (EMT)-related proteins were detected, and the invasion and migration abilities of the cells were examined. Moreover, the radioimmunoprecipitation (RIP) assay was used to examine whether the increase in the STAT3 protein level caused by ZEB1-AS1 overexpression was based on the promotion of STAT3 messenger RNA (mRNA) translation by AUF1, and the dual-luciferase assay was used to verify the results. Results The overexpression of ZEB1-AS1 increased the protein levels of ZEB1 and STAT3, promoted the occurrence of EMT, and enhanced the invasion and migration abilities of lung cancer cells. The RIP results showed that both lncRNA ZEB1-AS1 and ZEB1 mRNA bind to AUF1, but no binding between AUF1 and STAT3 mRNA was detected. The bioinformatics analysis and the results of the dual-luciferase experiments showed that STAT3 was the target gene of microRNA 519d (miRNA519d), and that lncRNA ZEB1-AS1 also binds to miRNA519d. Conclusions LncRNA ZEB1-AS1 formed the competing endogenous RNA (ceRNA) regulatory network of lncRNA ZEB1-AS1~miRNA519d~STAT3 as the molecular sponge, and promoted the expression of STAT3, thus promoting the occurrence of EMT in lung cancer cells.
Collapse
Affiliation(s)
- Zhengjin Chen
- Department of Respiratory, Nanhu District Central Hospital of Jiaxing, Jiaxing, China
| | - Yangwei Yao
- Pneumology Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Jingpeng Gao
- Pneumology Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| |
Collapse
|
6
|
Hassani S, Rostami P, Pourtavakol M, Karamashtiani A, Sayyadi M. Correlation of SNHG7 and BGL3 expression in patients with de novo acute myeloid leukemia; novel insights into lncRNA effect in PI3K signaling context in AML pathogenesis. Biochem Biophys Rep 2024; 40:101850. [PMID: 39469045 PMCID: PMC11513491 DOI: 10.1016/j.bbrep.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Background Acute myeloid leukemia (AML) has been identified as a top priority for discovering a reliable biomarker for treatment improvement and patient outcome prediction due to the heterogeneous nature of AML and the obstacle to find an appropriate treatment strategy for this malignancy. Considering the involvement of long noncoding RNA (lncRNA) SNHG7 and BGL3 found in various cancers, the exact expression pattern of these lncRNAs and their clinical implications in acute myeloid leukemia (AML) continue to be elusive. In order to demonstrate a possible mechanism underlying AML pathogenesis, our goal was to examine BGL3 and SNHG7 lncRNA expressions in PI3K pathway. Methods This case-control cross-sectional study were conducted on RNA extracted from blood samples of 30 patients diagnosed with AML (Ayatollah-Khansari hospital, Arak, Iran) and 30 (age and gender matched) healthy controls. The expression levels of SNHG7 and BGL3 lncRNAs and their target genes Akt and PTEN, were measured using qRT-PCR. Subsequently, by means of statistical analysis, we determined the plausible correlation between the expressions of the aforementioned genes and lncRNA respectively. Results In AML samples, a considerable increase in the expression levels of SNHG7 lncRNA and Akr gene was accompanied by a marked reduction in the expression levels of BGL3 lncRNA and PTEN gene. Nevertheless, No significant relationship between the expression level of the indicated genes/lncRNAs and age and sex was found. The remarkable correlation between the expression of genes/lncRNAs and the blast percentage in patients was the notable point in the result of this study. Conclusions As the most straightforward interpretation of our results, we propose that perhaps the association between SNHG7 and BGL3 built through the interaction between Akt and PTEN may play a crucial role in the AML pathogenesis and any element of this axis could be a potential novel target for further profound treatment strategies. Nonetheless, in the context of Hematological Malignancies, particularly AML, more detailed studies are needed in this area to elucidate the precise role played by this interesting testis-specific pathway.
Collapse
Affiliation(s)
- Saeed Hassani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Parsa Rostami
- Department of Internal Medicine, School of Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | | | | | - Mohammad Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Wilczyński B, Dąbrowska A, Kulbacka J, Baczyńska D. Chemoresistance and the tumor microenvironment: the critical role of cell-cell communication. Cell Commun Signal 2024; 22:486. [PMID: 39390572 PMCID: PMC11468187 DOI: 10.1186/s12964-024-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, Vilnius, LT-08406, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland
| |
Collapse
|
9
|
Liu ZY, Tang JM, Yang MQ, Yang ZH, Xia JZ. The role of LncRNA-mediated autophagy in cancer progression. Front Cell Dev Biol 2024; 12:1348894. [PMID: 38933333 PMCID: PMC11199412 DOI: 10.3389/fcell.2024.1348894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a sort of transcripts that are more than 200 nucleotides in length. In recent years, many studies have revealed the modulatory role of lncRNAs in cancer. Typically, lncRNAs are linked to a variety of essential events, such as apoptosis, cellular proliferation, and the invasion of malignant cells. Simultaneously, autophagy, an essential intracellular degradation mechanism in eukaryotic cells, is activated to respond to multiple stressful circumstances, for example, nutrient scarcity, accumulation of abnormal proteins, and organelle damage. Autophagy plays both suppressive and promoting roles in cancer. Increasingly, studies have unveiled how dysregulated lncRNAs expression can disrupt autophagic balance, thereby contributing to cancer progression. Consequently, exploring the interplay between lncRNAs and autophagy holds promising implications for clinical research. In this manuscript, we methodically compiled the advances in the molecular mechanisms of lncRNAs and autophagy and briefly summarized the implications of the lncRNA-mediated autophagy axis.
Collapse
Affiliation(s)
- Zi-yuan Liu
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-ming Tang
- Department of Neurology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Meng-qi Yang
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Zhi-hui Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-zeng Xia
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
10
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
11
|
Tang W, Luo J, Lin S, Xu J, Yan Q. Mechanism of PWAR6 regulating cisplatin drug sensitivity in non-small cell lung cancer through miR-577/PHACTR1. Gene 2024; 893:147954. [PMID: 37923092 DOI: 10.1016/j.gene.2023.147954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
lncRNA Prader Willi/Angelman Region RNA 6 (PWAR6) is considered to play a protective lncRNA in glioma, but, the role of PWAR6 in the occurrence and cisplatin resistance of non-small cell lung cancer (NSCLC) is elusive. In the study, we aimed to assess the role of PWAR6 in the cisplatin resistance of NSCLC. Based on the oebiotech and TargetScanHuman database, we predicted the interaction between PWAR6, miR-577 and PHACTR1. We then used small interfering RNA (siRNA), miRNA mimics and dual-luciferase reporter assay to explore the regulatory role of PWAR6/miR-577PHACTR1. Based on the online database, miR-577 can interact with PWAR6 and PHACTR1. Soon afterwards, we observed that the expression of PWAR6 and PHACTR1 was increased, while miR-577 expression was decreased in A549/DDP cells. And the cell viability was decreased, while cell apoptosis was increased in A549/DDP cells. What's more, PWAR6 knockdown can promote the expression of miR-577 and inhibit the expression of PHACTR1. PWAR6 knockdown elevated cell proliferation and reduced cell apoptosis of A549/DDP cells. Interestingly, we found that miR-577 can interact with PHACTR1 to regulate the proliferation and apoptosis of A549/DDP cells. To conclude, we speculated that PWAR6 knockdown elevated cell proliferation and reduced cell apoptosis of A549/DDP cells via miR-577/PHACTR1, providing the theoretical basis for the clinical treatment of NSCLC patients.
Collapse
Affiliation(s)
- Wenjun Tang
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan 570100, China.
| | - Jingru Luo
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan 570100, China.
| | - Shu Lin
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan 570100, China.
| | - Junnv Xu
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan 570100, China.
| | - Qixing Yan
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan 570100, China.
| |
Collapse
|
12
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
13
|
Qi L, Yin Y, Sun M. m6A-mediated lncRNA NEAT1 plays an oncogenic role in non-small cell lung cancer by upregulating the HMGA1 expression through binding miR-361-3p. Genes Genomics 2023; 45:1537-1547. [PMID: 37688756 DOI: 10.1007/s13258-023-01442-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Lung cancer is the most common primary malignant tumor of the lung, and 85% of lung cancer is non-small cell lung cancer (NSCLC). The N6-methyladenosine (m6A) and long noncoding RNAs (lncRNAs) have been widely reported to participate in the development of non-small cell lung cancer. OBJECTIVE However, the potential molecular mechanisms of m6A-regulated lncRNAs in NSCLC still need further investigation. METHODS The expression levels and the role of lncRNA NEAT1 in NSCLC tissues or cells were measured by RT-qPCR, Western blot, cell counting kit 8 (CCK-8), flow cytometry assay. RNA immunoprecipitation (RIP) was used to measure the levels of m6A modification of NEAT1. Bioinformatics analysis and dual-luciferase reporter gene assay were detected the relationship between miR-361-3p and NEAT1/HMGA1. Mouse xenograft tumor models were established to confirm the effects of lncRNA NEAT1 in vivo. RESULTS In this study, we verified whether m6A-modified lncRNA nuclear enriched abundant transcript 1 (NEAT1) is involved in NSCLC progression via miR-361-3p/HMGA1 axis. Firstly, we found that lncRNA NEAT1 was upregulated in NSCLC, and was associated with a poor survival in NSCLC patients. Methyltransferase like 3 (METTL3)-mediated m6A modification stabilized and upregulated NEAT1 expression. Next, function experiment indicated that depletion of METTL3 and NEAT1 induced cell apoptosis and inhibited cell proliferation, epithelial-mesenchymal transition (EMT). Likewise, in vivo experiments further supported the oncogenic role of NEAT1 in NSCLC. In addition, the molecular mechanism was uncovered in our study, and we found that lncRNA NEAT1 promoted the expression of high-mobility group AT-hook 1 (HMGA1) by sponging miR-361-3p and then promoted tumorigenesis of NSCLC. CONCLUSION In conclusion, our findings demonstrated that METTL3-mediated m6A modification accelerated NSCLC progression by regulating the NEAT1/miR-361-3p/HMGA1 axis, which provides important targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Li Qi
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, China.
| | - Yue Yin
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, China
| | - Mengqi Sun
- Department of Oncology and Radiotherapy, Shenzhen People's Hospital, Shenzhen, 518020, China
| |
Collapse
|
14
|
CAO X, CHEN L. [Research Progress of LncRNA SNHGs in Regulating the Biological Behavior
of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:851-862. [PMID: 38061887 PMCID: PMC10714051 DOI: 10.3779/j.issn.1009-3419.2023.102.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 12/18/2023]
Abstract
Lung cancer is one of the malignant tumors with the highest incidence and mortality rate in China, and its occurrence and development mechanism and treatment methods are the current research focuses. In recent years, the emergence of drugs targeting various tumor driver genes has significantly improved patients' survival and quality of life, setting off a wave of research on new therapeutic targets. Among them, long non-coding RNA (lncRNA) plays a crucial role in the malignant behavior of tumors, which has attracted widespread attention. Shown by a large number of studies, partial members of lncRNA small nucleolar RNA host gene (SNHG) family are aberrantly expressed in many maliglant tumors including non-small cell lung cancer (NSCLC) and participate in cell proliferation, invasion and migration, which may act as a new diagnostic and prognostic biomarker and can be a therapeutic target of NSCLC. In this review, we comprehensively summarize and explore the recent investigation of SNHGs in NSCLC in order to provide new ideas for the diagnosis and treatment of NSCLC.
.
Collapse
|
15
|
Liu W, Zuo B, Liu W, Huo Y, Zhang N, Yang M. Long non-coding RNAs in non-small cell lung cancer: implications for preventing therapeutic resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188982. [PMID: 37734560 DOI: 10.1016/j.bbcan.2023.188982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Lung cancer has the highest mortality and morbidity rates among all cancers worldwide. Despite many complex treatment options, including radiotherapy, chemotherapy, targeted drugs, immunotherapy, and combinations of these treatments, efficacy is low in cases of resistance to therapy, metastasis, and advanced disease, contributing to low overall survival. There is a pressing need for the discovery of novel biomarkers and therapeutic targets for the early diagnosis of lung cancer and to determine the efficacy and outcomes of drug treatments. There is now substantial evidence for the diagnostic and prognostic value of long noncoding RNAs (lncRNAs). This review briefly discusses recent findings on the roles and mechanisms of action of lncRNAs in the responses to therapy in non-small cell lung cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Bingli Zuo
- Human Resources Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Wenting Liu
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong Province 261041, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| |
Collapse
|
16
|
Yang H, Feng X, Tong X. Long noncoding RNA POU6F2-AS2 contributes to the aggressiveness of nonsmall-cell lung cancer via microRNA-125b-5p-mediated E2F3 upregulation. Aging (Albany NY) 2023; 15:2689-2704. [PMID: 37053020 PMCID: PMC10120888 DOI: 10.18632/aging.204639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
The role of the majority of long noncoding RNAs (lncRNAs) in the progression of nonsmall-cell lung cancer (NSCLC) remains elusive, despite their potential value, thus warranting in-depth studies. For example, detailed functions of the lncRNA POU6F2 antisense RNA 2 (POU6F2-AS2) in NSCLC are unknown. Herein, we investigated the expression status of POU6F2-AS2 in NSCLC. Furthermore, we systematically delineated the biological roles of POU6F2-AS2 in NSCLC alongside its downstream molecular events. We measured the expression levels of POU6F2-AS2 using quantitative real-time polymerase chain reaction and performed a series of functional experiments to address its regulatory effects in NSCLC cells. Using bioinformatic platforms, RNA immunoprecipitation, luciferase reporter assays, and rescue experiments, we investigated the potential mechanisms of POU6F2-AS2 in NSCLC. Subsequently, we confirmed the remarkable overexpression of POU6F2-AS2 in NSCLC using The Cancer Genome Atlas database and our own cohort. Functionally, inhibiting POU6F2-AS2 decreased NSCLC cell proliferation, colony formation, and motility, whereas POU6F2-AS2 overexpression exhibited contrasting effects. Mechanistically, POU6F2-AS2 acts as an endogenous decoy for microRNA-125b-5p (miR-125b-5p) in NSCLC that causes the overexpression of the E2F transcription factor 3 (E2F3). Moreover, suppressing miR-125b-5p or increasing E2F3 expression levels sufficiently recovered the anticarcinostatic activities in NSCLC induced by POU6F2-AS2 silencing. Thus, POU6F2-AS2 aggravates the oncogenicity of NSCLC by targeting the miR-125b-5p/E2F3 axis. Our findings suggest that POU6F2-AS2 is a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Liaoning 110016, P.R. China
| | - Xiao Feng
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Liaoning 110016, P.R. China
| | - Xiangdong Tong
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Liaoning 110016, P.R. China
| |
Collapse
|