1
|
Wang X, Jin H, Feng X, Liang Z, Jin R, Li X. Depiction of the Genetic Alterations and Molecular Landscapes of Thymic Epithelial Tumors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:2966. [PMID: 39272824 PMCID: PMC11394263 DOI: 10.3390/cancers16172966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Thymic epithelial tumors (TETs), consisting of thymomas, thymic carcinomas (TCs), and thymic neuroendocrine tumors, are rare diseases. Surgery remains the prime option in resectable and early-stage TETs, while chemotherapy, targeted therapy, and immunotherapy are also potential treatment modalities. However, the inadequate comprehension of the molecular landscape of TETs impedes the exploitation of such therapies. Hence, we conducted a meta-analysis which includes 21 studies reporting on genomic alterations in TETs and 14 studies reporting on PD-L1 expression levels, respectively. The pooled estimated rates of the most frequently mutated genes and PD-L1 expression levels were analyzed using the R software. We uncovered that the pooled estimated overall mutation rate is 0.65 ([0.49; 0.81]), and the top three genes with highest mutation frequency in thymomas and TCs are GTF2I (0.4263 [0.3590; 0.4936]), TP53 (0.1101 [0.0000; 0.2586]), and RAS (0.0341 [0.0104; 0.0710]), and TP53 (0.1797 [0.0732; 0.3203]), CDKN2A (0.0608 [0.0139; 0.1378]), and TET2 (0.0318 [0.0087; 0.0639]), respectively. A uniform GTF2I mutational rate in thymomas and TP53 mutational rate in thymic squamous cell carcinomas (TSCCs) are also observed. The pooled estimated expression level of PD-L1 is 0.71 ([0.59-0.81]). This systematic review provides an overview of the gene alteration landscape and PD-L1 expression levels in TETs, discovers several potential confounding factors that may contribute to the high heterogeneity, and facilitates deeper investigations into the elucidation of the molecular landscape of TETs.
Collapse
Affiliation(s)
- Xin Wang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Hongming Jin
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Xiaotong Feng
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Zhijian Liang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Ruoyi Jin
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Xiao Li
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Xiao K, Ullah I, Yang F, Wang J, Hou C, Liu Y, Li X. Comprehensive bioinformatics analysis of FXR1 across pan-cancer: Unraveling its diagnostic, prognostic, and immunological significance. Medicine (Baltimore) 2023; 102:e36456. [PMID: 38050239 PMCID: PMC10695598 DOI: 10.1097/md.0000000000036456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Fragile X-related protein 1 (FXR1) is an RNA-binding protein that belongs to the fragile X-related (FXR) family. Studies have shown that FXR1 plays an important role in cancer cell proliferation, invasion and migration and is differentially expressed in cancers. This study aimed to gain a comprehensive and systematic understanding of the analysis of FXR1's role in cancers. This would lead to a better understanding of how it contributes to the development and progression of various malignancies. this study conducted through The Cancer Genome Atlas (TCGA), GTEx, cBioPortal, TISIDB, GEPIA2 and HPA databases to investigated FXR1's role in cancers. For data analysis, various software platforms and web platforms were used, such as R, Cytoscape, hiplot plateform. A significant difference in FXR1 expression was observed across molecular and immune subtypes and across types of cancer. FXR1 expression correlates with disease-specific survival (DSS), and overall survival (OS) in several cancer pathways, further in progression-free interval (PFI) in most cancers. Additionally, FXR1 showed a correlation with genetic markers of immunomodulators in different cancer types. Our study provides insights into the role of FXR1 in promoting, inhibiting, and treating diverse cancers. FXR1 has the potential to serve as a diagnostic and prognostic biomarker for cancer, with therapeutic value in immune-based, targeted, or cytotoxic treatments. Further clinical validation and exploration of FXR1 in cancer treatment is necessary.
Collapse
Affiliation(s)
- Keyuan Xiao
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Yang
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jiao Wang
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Chunxia Hou
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yuqiang Liu
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinghua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
3
|
Lang M, Pausch T, Anamaterou C. Characterizing thymic tumors-how to track down rare diseases. J Thorac Dis 2022; 14:4571-4573. [PMID: 36647465 PMCID: PMC9840048 DOI: 10.21037/jtd-2022-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Matthias Lang
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Pausch
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | |
Collapse
|