1
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
2
|
Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, Pedersen A, Nilsson UJ, Leffler H, Sethi T, Tantawi S, Gravelle L, Slack RJ, Mills R, Karmakar U, Humphries D, Zetterberg F, Keeling L, Paul L, Molyneaux PL, Li F, Funston W, Forrest IA, Simpson AJ, Gibbons MA, Maher TM. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J 2021; 57:13993003.02559-2020. [PMID: 33214209 PMCID: PMC8156151 DOI: 10.1183/13993003.02559-2020] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Galectin (Gal)-3 is a profibrotic β-galactoside-binding lectin that plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and IPF exacerbations. TD139 is a novel and potent small-molecule inhibitor of Gal-3. A randomised, double-blind, multicentre, placebo-controlled, phase 1/2a study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled TD139 in 36 healthy subjects and 24 patients with IPF. Six dose cohorts of six healthy subjects were evaluated (4:2 TD139:placebo ratio) with single doses of TD139 (0.15–50 mg) and three dose cohorts of eight patients with IPF (5:3 TD139:placebo ratio) with once-daily doses of TD139 (0.3–10 mg) for 14 days. Inhaled TD139 was well tolerated with no significant treatment-related side-effects. TD139 was rapidly absorbed, with mean time taken to reach maximum plasma concentration (Cmax) values ranging from 0.6 to 3 h and a plasma half-life (T1/2) of 8 h. The concentration of TD139 in the lung was >567-fold higher than in the blood, with systemic exposure predicting exposure in the target compartment. Gal-3 expression on alveolar macrophages was reduced in the 3 and 10 mg dose groups compared with placebo, with a concentration-dependent inhibition demonstrated. Inhibition of Gal-3 expression in the lung was associated with reductions in plasma biomarkers centrally relevant to IPF pathobiology (platelet-derived growth factor-BB, plasminogen activator inhibitor-1, Gal-3, CCL18 and YKL-40). TD139 is safe and well tolerated in healthy subjects and IPF patients. It was shown to suppress Gal-3 expression on bronchoalveolar lavage macrophages and, in a concerted fashion, decrease plasma biomarkers associated with IPF progression. TD139 is a potent inhibitor of galectin-3, a key driver of fibrosis in the lung. In this phase 1/2a clinical study, inhaled TD139 was safe, well tolerated, and demonstrated target engagement and decreased plasma biomarkers associated with IPF progression.https://bit.ly/2JREKx6
Collapse
Affiliation(s)
- Nikhil Hirani
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alison C MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Galecto, Copenhagen, Denmark
| | - Lisa Nicol
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Hakon Leffler
- Dept of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | - Ross Mills
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Duncan Humphries
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Lyn Paul
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Philip L Molyneaux
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Feng Li
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Wendy Funston
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian A Forrest
- Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael A Gibbons
- Respiratory Dept, Institute of Biomedical and Clinical Science, Royal Devon and Exeter NHS Foundation Trust, Medical School, University of Exeter, Exeter, UK
| | - Toby M Maher
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Doskaliuk B, Zaiats L, Yatsyshyn R, Gerych P, Cherniuk N, Zimba O. Pulmonary involvement in systemic sclerosis: exploring cellular, genetic and epigenetic mechanisms. Rheumatol Int 2020; 40:1555-1569. [PMID: 32715342 DOI: 10.1007/s00296-020-04658-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a chronic progressive autoimmune disease characterized by immune inflammation, vasculopathy, and fibrosis. There are still numerous uncertainties in the understanding of disease initiation and progression. Pulmonary involvement in SSc, and particularly pulmonary fibrosis, is critical for all organ systems affections in this disease. This review is aimed to describe and analyze new findings in the pathophysiology of SSc-associated pulmonary involvement and to explore perspective diagnostic and therapeutic strategies. A myriad of cellular interactions is explored in the dynamics of progressive interstitial lung disease (ILD) and pulmonary hypertension (PH) in SSc. The role of exosomes, microvesicles, and apoptotic bodies is examined and the impact of micro and long non-coding RNAs, DNA methylation, and histone modification in SSc is discussed.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. .,Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine.
| | - Liubomyr Zaiats
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine
| | - Roman Yatsyshyn
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Petro Gerych
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Nataliia Cherniuk
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Olena Zimba
- Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|