1
|
Keshavarz Alikhani H, Pourhamzeh M, Seydi H, Shokoohian B, Hossein-khannazer N, Jamshidi-adegani F, Al-Hashmi S, Hassan M, Vosough M. Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications. Front Cell Dev Biol 2022; 10:894800. [PMID: 35813199 PMCID: PMC9260315 DOI: 10.3389/fcell.2022.894800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Massoud Vosough,
| |
Collapse
|
2
|
Nishikido T, Ray KK. Targeting the peptidase PCSK9 to reduce cardiovascular risk: Implications for basic science and upcoming challenges. Br J Pharmacol 2019; 178:2168-2185. [PMID: 31465540 DOI: 10.1111/bph.14851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
LDL cholesterol (LDL-C) plays a central role in the progression of atherosclerosis. Statin therapy for lowering LDL-C reduces the risk of atherosclerotic cardiovascular disease and is the recommended first-line treatment for patients with high LDL-C levels. However, some patients are unable to achieve an adequate reduction in LDL-C with statins or are statin-intolerant; thus, PCSK9 inhibitors were developed to reduce LDL-C levels, instead of statin therapy. PCSK9 monoclonal antibodies dramatically reduce LDL-C levels and cardiovascular risk, and promising new PCSK9 inhibitors using different mechanisms are currently being developed. The absolute benefit of LDL-C reduction depends on the individual absolute risk and the achieved absolute reduction in LDL-C. Therefore, PCSK9 inhibitors may provide the greatest benefits from further LDL-C reduction for the highest risk patients. Here, we focus on PCSK9-targeted therapies and discuss the challenges of LDL-C reduction for prevention of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Toshiyuki Nishikido
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK.,Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
3
|
Ward NC, Page MM, Watts GF. Clinical guidance on the contemporary use of proprotein convertase subtilisin/kexin type 9 monoclonal antibodies. Diabetes Obes Metab 2019; 21 Suppl 1:52-62. [PMID: 31002454 DOI: 10.1111/dom.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
There is now significant evidence for the benefits of lowering low-density lipoprotein cholesterol (LDL-c) to reduce the risk of atherosclerotic cardiovascular disease (ASCVD). Although statins are the most widely prescribed lipid-lowering therapy that effectively lower LDL-c, especially in combination with ezetimibe, some patients require adjunctive therapy to further lower LDL-c and mitigate attendant risk of ASCVD. The gap can be filled by proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies whose use is currently supported by two recent cardiovascular outcome studies and new treatment guidelines. We provide an overview of extant studies investigating PCSK9 monoclonal antibodies in various patient populations, an update of the guidelines regarding their use and a case-based discussion.
Collapse
Affiliation(s)
- Natalie C Ward
- School of Public Health, Curtin University, Perth, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Michael M Page
- School of Medicine, University of Western Australia, Perth, Australia
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Australia
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
4
|
Recent Updates on the Use of PCSK9 Inhibitors in Patients with Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2019; 21:16. [DOI: 10.1007/s11883-019-0778-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Nishikido T, Ray KK. Non-antibody Approaches to Proprotein Convertase Subtilisin Kexin 9 Inhibition: siRNA, Antisense Oligonucleotides, Adnectins, Vaccination, and New Attempts at Small-Molecule Inhibitors Based on New Discoveries. Front Cardiovasc Med 2019; 5:199. [PMID: 30761308 PMCID: PMC6361748 DOI: 10.3389/fcvm.2018.00199] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein (LDL) is one of the principal risk factors for atherosclerosis. Circulating LDL particles can penetrate into the sub-endothelial space of arterial walls. These particles undergo oxidation and promote an inflammatory response, resulting in injury to the vascular endothelial wall. Persistent elevation of LDL-cholesterol (LDL-C) is linked to the progression of fatty streaks to lipid-rich plaque and thus atherosclerosis. LDL-C is a causal factor for atherosclerotic cardiovascular disease and lowering it is beneficial across a range of conditions associated with high risk of cardiovascular events. Therefore, all guidelines-recommended initiations of statin therapy for patients at high cardiovascular risk is irrespective of LDL-C. In addition, intensive LDL-C lowering therapy with statins has been demonstrated to result in a greater reduction of cardiovascular event risk in large clinical trials. However, many high-risk patients receiving statins fail to achieve the guideline-recommended reduction in LDL-C levels in routine clinical practice. Moreover, low levels of adherence and often high rates of discontinuation demand the need for further therapies. Ezetimibe has typically been used as a complement to statins when further LDL-C reduction is required. More recently, proprotein convertase subtilisin kexin 9 (PCSK9) has emerged as a novel therapeutic target for lowering LDL-C levels, with PCSK9 inhibitors offering greater reductions than feasible through the addition of ezetimibe. PCSK9 monoclonal antibodies have been shown to not only considerably lower LDL-C levels but also cardiovascular events. However, PCSK9 monoclonal antibodies require once- or twice-monthly subcutaneous injections. Further, their manufacturing process is expensive, increasing the cost of therapy. Therefore, several non-antibody treatments to inhibit PCSK9 function are being developed as alternative approaches to monoclonal antibodies. These include gene-silencing or editing technologies, such as antisense oligonucleotides, small interfering RNA, and the clustered regularly interspaced short palindromic repeats/Cas9 platform; small-molecule inhibitors; mimetic peptides; adnectins; and vaccination. In this review, we summarize the current knowledge base on the role of PCSK9 in lipid metabolism and an overview of non-antibody approaches for PCSK9 inhibition and their limitations. The subsequent development of alternative approaches to PCSK9 inhibition may give us more affordable and convenient therapeutic options for the management of high-risk patients.
Collapse
Affiliation(s)
- Toshiyuki Nishikido
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.,Department of Cardiovascular medicine, Saga University, Saga, Japan
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
PCSK9 inhibition 2018: riding a new wave of coronary prevention. Clin Sci (Lond) 2019; 133:205-224. [DOI: 10.1042/cs20171300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
AbstractProprotein convertase subtilisin/kexin type 9 (PCSK9) is a hepatic enzyme that regulates the low-density lipoprotein cholesterol (LDL-c) receptor and thus circulating LDL-c levels. With overwhelming evidence now supporting the reduction in LDL-c to lower the risk of cardiovascular disease, PCSK9 inhibitors represent an important therapeutic target, particularly in high-risk populations. Here, we summarise and update the science of PCSK9, including its discovery and the development of various inhibitors, including the now approved monoclonal antibodies. In addition, we summarise the clinical applications of PCSK9 inhibitors in a range of patient populations, as well as the major randomised controlled trials investigating their use in coronary prevention.
Collapse
|